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Creation and Testing of a Deep
Learning Algorithm to Automatically
Identify and Label Vessels,
Nerves, Tendons, and Bones on
Cross-sectional Point-of-Care
Ultrasound Scans for Peripheral
Intravenous Catheter Placement by
Novices
Michael Blaivas, MD, MBA , Robert Arntfield, MD, Matthew White, MD

Objectives—We sought to create a deep learning (DL) algorithm to identify vessels,
bones, nerves, and tendons on transverse upper extremity (UE) ultrasound (US) images
to enable providers new to US-guided peripheral vascular access to identify anatomy.

Methods—We used publicly available DL architecture (YOLOv3) and deidentified
transverse US videos of the UE for algorithm development. Vessels, bones, tendons,
and nerves were labeled with bounding boxes. A total of 203,966 images were gen-
erated from videos, with corresponding label box coordinates in a YOLOv3 format.
Training accuracy, losses, and learning curves were tracked. As a final real-world test,
50 randomly selected images from unrelated UE US videos were used to test the
DL algorithm. Four different versions of the YOLOv3 algorithm were tested with
varied amounts of training and sensitivity settings. The same 50 images were labeled
by 2 blinded point-of-care ultrasound (POCUS) experts. The area under the curve
(AUC) was calculated for the DL algorithm and POCUS expert performance.

Results—The algorithm outperformed POCUS experts in detection of all struc-
tures in the UE, with an AUC of 0.78 versus 0.69 and 0.71, respectively. When
considering vessels, only one of the POCUS experts attained an AUC of 0.85,
just ahead of the DL algorithm, with an AUC of 0.83.

Conclusions—Our DL algorithm proved accurate at identifying 4 common struc-
tures on cross-sectional US imaging of the UE, which would allow novice POCUS
providers to more confidently and accurately target vessels for cannulation, avoiding
other structures. Overall, the algorithm outperformed 2 blinded POCUS experts.
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Deep learning (DL), a branch of artificial intelligence, is
beginning to come to commercial reality in medical
imaging. Multiple companies have sought and obtained
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Food and Drug Administration clearance for various
DL imaging applications, including computed tomo-
graphy, chest radiography, and magnetic resonance
imaging.1–4 Deep learning applications can also be
found in ultrasound (US) but have been mostly limited
to large-scale, costly imaging platforms.5,6 Recently, we
have seen the introduction of DL applications in point-
of-care ultrasound (POCUS) devices, including auto-
mated left ventricular ejection fraction assessment.6

Although quite early in deployment, results for
POCUS artificial intelligence functions have been
mixed, with one automatic software application under-
going a class 2 Food and Drug Administration recall in
early 2019.7

Although DL applications in traditional imaging
promise improved work flow, inter-rater reliability,
and faster turnaround times, the rapidly expanding
and heterogeneous domain of POCUS may benefit
most from DL innovations. As POCUS is increasingly
spreading to new medical specialties beyond initial
adopters such as emergency medicine and critical care
providers, a familiar barrier to broader use persists.
This barrier, now magnified by larger numbers of
potential users, relates to the scarcity of training avail-
able for new POCUS providers.8,9

Deep learning holds the promise of POCUS
automation to bridge the training gap with automated
interpretation of images. Aside from functional deter-
minations (eg, left ventricular function), a pressing
area of broad uptake is US-assisted peripheral venous
access. This application has merit across providers
from all backgrounds: physicians, nurses, emergency
medical technicians, and physician assistants.10 We
therefore sought to develop a DL application to assist
in the image interpretation required for US-guided
peripheral vascular access through the identification
of 4 key anatomic landmarks on transverse US exami-
nations of the upper extremity (UE).

Materials and Methods

Study Design
This was a study of DL algorithm development to
automatically label blood vessels, nerves, and tendons
on transverse UE US images. The study was Institu-
tional Review Board exempted, as no patients or any

patient data were used in the creation or testing of
the DL algorithm.

Data
Ultrasound image data were obtained from US videos
of cross-sectional scans of human UEs. Images were
obtained from public domain open-access sources with
no accompanying patient information, including
anonymized image bank repositories, Internet posted
videos and images, stock images and videos, and US
vendor images and videos covering musculoskeletal, soft
tissue, vascular access, and regional anesthesia categories.
No patient identifiers were present on any of the image
sources. Video data types included mov, avi, mp4, wmv,
mp1, and mp2. Extracted single frames were all JPEG. A
total of 183,522 images were imported into the training
data set, out of the 203,966 total.

Data Manipulation and Labeling
All videos were kept in their original size and aspect
ratio and imported into open-source video-labeling
software (CVAT). CVAT was downloaded from the
GitHub.com website (http://github.com/opencv/
cvat). CVAT is a free online interactive video and
image annotation tool for computer vision. CVAT
stands for “Powerful and Efficient Computer Vision
Annotation Tool.” It was originally developed for
labeling various objects on video for autonomous car
operation. It allows users to draw bounding boxes
around objects of interest. CVAT was used to label
blood vessels, nerves, bones, and tendons approxi-
mately every 10 frames. The CVAT software allowed
interpellation of bounding boxes in between the
labeled frames. A researcher with extensive US experi-
ence was tasked with labeling and would review the
entire video and adjust bounding boxes when inter-
pellation failed to properly propagate their location
between key frames. This researcher was not used as
an evaluator of images later in the study. The CVAT
software produced files with individual image frames
comprising the videos with corresponding bounding
box coordinates and labels.

Algorithm Design
We used Python programming language version 3.72
(Python Software Foundation, Wilmington, DE) with
Anaconda (Anaconda, Inc, Austin, TX) to manage pack-
ages and help in scripting and use of the YOLOv3 DL
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algorithm. Code for YOLOv3 is available from various
public sources, including GitHub.com. YOLOv3 is a
computationally efficient DL architecture designed to
analyze real-time video of street scenes and similar
settings. It allows object detection and, once trained to
recognized them, will place bounding boxes around
objects of interest such as cars, people, trees, and other
objects. YOLOv3 is fed frames from video with
bounding boxes around key objects and associated
labels. The YOLOv3 architecture was adapted to US
video through code manipulation and trial and error.
Trial and error was used in finding the most effective
settings for the YOLOv3 architecture for increased accu-
racy in training the model. For example, variables such
as batch size were increased to speed training; different
optimizers were tested to see which gave the best learn-
ing results (eg, momentum, adam, sgd, and rmprop);
and the nms_topk was decreased from 150 to 7 to limit
high numbers of meaningless boxed validation predic-
tions that only served to confuse results.

We trained our YOLOv3 algorithm on a personal
computer with an 11-GB GeForce RTX 2080 Ti
graphics-processing unit (Nvidia Corporation, Santa
Clara, CA), and 64 GB of RAM. Researchers adjusted
the batch size and learning rates during training for
optimal training times while avoiding overfitting and
exploding gradients, which result in training failure.
Batch sizes of 75 were ultimately the most effective as
determined by testing a range of batch sizes from
10 to 100 by increments of 5 and observing training
times and training validation accuracies. Two schools
of thought exist regarding the optimal epochs used in
YOLOv3 training. An epoch simply refers to a single
cycle of training a convolutional neural network
through the full data set; multiple epochs are typically

required to train a convolutional neural network. One
school advocates 273 epochs for optimal learning,
whereas another suggests that at 68 epochs, most
training reaches an inflection point beyond which
there is little improvement in algorithm accuracy
when tested.11 Researchers manipulated the number
of epochs and produced 4 variants: 25 epochs,
25 epochs with a low threshold for object detection,
54 epochs, and 60 epochs. Our images contained far
fewer items that needed to be identified compared to

Table 1. Area Under the Curve Results for POCUS Experts and DL Algorithms for Identification of Blood Vessels, Nerves, Tendons, and
Bone

Variable Under Test AUC SE Asymptotic P

Asymptotic 95% CI

Lower Bound Upper Bound

Expert 1 0.71 0.04 <.001 0.64 0.79
Expert 2 0.69 0.05 <.001 0.61 0.77
DL 1 0.78 0.04 <.001 0.71 0.85
DL 2 0.70 0.05 <.001 0.61 0.79
DL 3 0.78 0.04 <.001 0.71 0.85
DL 4 0.76 0.04 <.001 0.69 0.83

DL 1, YOLOv3, 25 epochs; DL 2, YOLOv3, 25 epochs, lower threshold; DL 3, YOLOv3, 54 epochs; DL 4, YOLOv3, 60 epochs. CI indicates
confidence interval.

Figure 1. Area under the curve results are presented for POCUS
experts and DL algorithms. DL 1, YOLOv3, 25 epochs; DL
2, YOLOv3, 25 epochs, lower threshold; DL 3, YOLOv3, 54 epochs;
DL 4, YOLOv3, 60 epochs.
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original convolutional neural network scripting, so we
reduced this from 400 to 4. Additionally, US images
appeared to present considerable challenges to the
prediction capabilities of the model. When the thresh-
old was higher, the model appeared less likely to
make a prediction. Reducing the threshold allowed
the model to make predictions even when it was “less
certain” or had a lower probability, yet this was
required in the context of our application. We found
these reduced threshold predictions to be worth
including, as they were frequently correct. As an

example, we reduced the score threshold from 0.3 to
0.2 and the nms threshold from 0.45 to 0.35.

Algorithm Validation and Testing
The YOLOv3 algorithm performs cross-validation
automatically every 2 epochs. However, studies suggest
that the final cross-validation accuracy at the end of
training may not reflect algorithm performance on new
data as would be encountered in real-world applica-
tions, in which patient US examinations not previously
encountered by the algorithm during training may con-
tain differently appearing anatomy and present a chal-
lenge. Additionally, it has been established that simply
testing an algorithm on images generated on different
US equipment can lead to poorer-than-predicted per-
formance.12,13 Therefore, a robust algorithm may need
to be trained on a variety of US images from different
subjects as well as different US equipment.

To test our algorithm’s performance in a real-
world–like scenario, we obtained additional US video
of UE cross-sectional views that were not previously
used for algorithm training. These additional videos
were also sourced from the Internet. The videos were
broken into 6822 single frames, and 50 frames were
randomly selected for algorithm testing. Additionally,
we compared the algorithm’s performance to that of
2 fellowship-trained POCUS experts with 7 and
15 years of experience, respectively. The ground truth
was assigned by a third fellowship-trained POCUS
expert with 25 years of experience. The third POCUS
expert reviewed the source US video, corresponding
to each randomly selected US test image, to trace and
label vessels, nerves, tendons, and bones when pre-
sent. These labels were used for comparison to
POCUS expert and YOLOv3 performance on the
50 test images. The third POCUS expert did not have

Figure 2. Area under the curve results for vessel identification are
presented for POCUS experts and DL algorithms. DL 1, YOLOv3,
25 epochs; DL 2, YOLOv3, 25 epochs, lower threshold; DL
3, YOLOv3, 54 epochs; DL 4, YOLOv3, 60 epochs.

Table 2. Area Under the Curve Results for POCUS Experts and DL Algorithms for Identification of Blood Vessels

Variable Under Test AUC SE Asymptotic P

Asymptotic 95% CI

Lower Bound Upper Bound

Expert 1 0.70 0.07 .013 0.58 .82
Expert 2 0.85 0.05 <.001 0.76 .94
DL 1 0.81 0.07 <.001 0.70 .93
DL 2 0.72 0.08 .005 0.59 .86
DL 3 0.83 0.06 <.001 0.73 .93
DL 4 0.79 0.07 <.001 0.68 .91

DL 1, YOLOv3, 25 epochs; DL 2, YOLOv3, 25 epochs, lower threshold; DL 3, YOLOv3, 54 epochs; DL 4, YOLOv3, 60 epochs. CI indicates
confidence interval.
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the results of the other 2 POCUS experts or the algo-
rithm results before labeling the source images used
as the reference standard.

Statistical Analysis
The 4 different training regimens for YOLOv3 and
their resultant algorithms and the 2 blinded POCUS
reviewers were compared to ground truth labels
created by the unblinded POCUS reviewer. Video
review was necessary to confirm structure identity
when not obvious from still images. We calculated
the area under the curve (AUC) using PSPP 1.0.1
statistical software (GNU Project, Boston, MA)
to evaluate the performance of all 4 algorithms and
2 POCUS experts for identification of all 4 structures
as well as for identification of just blood vessels.

Results

Table 1 shows the AUC results for POCUS experts and
YOLOv3 algorithm variants. Figure 1 shows the actual
AUC curves. Two variants of the YOLOv3 algorithm
performed best, with an AUC of 0.78 for all 4 anatomic
structures. The POCUS experts scored AUCs of 0.71
and 0.69, respectively. When broken down by perfor-
mance in identifying blood vessels, one of the POCUS
experts performed the best, with an AUC of 0.85.
YOLOv3 with 54 epochs of training was slightly worse,
with an AUC of 0.83 (Figure 2 and Table 2).

Discussion

Our study demonstrates that a neural network trained
on US images of the UE can readily distinguish
between various anatomic structures, including vessels,
nerves, bones, and tendons. Peripheral vascular access
is becoming increasingly challenging as patients live
longer (exhausting conventional sites for intravenous
access) and as the rates of obesity and chronic illness
have increased steadily in recent decades.14 In certain
complex patient groups, up to 59% are classified as
having difficult peripheral vascular access.15 Difficulty
in obtaining vascular access typically stems from lack
of visible or palpable veins available for cannulation.
When vascular access cannot be readily obtained,
delays in medication administration, laboratory testing,

and fluid delivery can result. Additionally, multiple
attempts at peripheral intravenous access result in
patient discomfort and poor patient satisfaction.

When no peripheral vascular access is available,
some providers turn to central venous access.16 Central
venous catheter placement is an invasive procedure
with numerous potential serious complications.17 Lack
of vascular access is the reason behind as many as 40%
of central lines placed in emergency departments.16

However, one alternative is placement of peripheral
venous catheters under US guidance. Initially described
almost 20 years ago, it was rapidly introduced to emer-
gency nurses as the vascular access first responders and
proved to be highly effective.16 However, adequate
training with regular quality assurance is required, and
this is even more challenging in the modern era of
nursing shortages and high nursing turnover, resulting
in a large pool of nurses not trained in US use.

Identification of key anatomic landmarks is a
major challenge faced by novice POCUS users when
attempting to use US guidance for peripheral vascular
access. Nurses and other novices find it difficult to
identify potential blood vessels as well as other struc-
tures that can sometimes be confused for vessels but
should be avoided, such as tendons, nerves, and some-
times even bones. Deep learning in medical imaging
has proved well suited for identification of anatomic
structures and even pathologic findings on chest radi-
ography, head and body computed tomography, and
magnetic resonance imaging.18,19 Companies have
been slower to deploy US DL applications, and initial
products were found only on high-end consultative US
equipment, limiting access for POCUS users who are
likely to benefit most from DL automation.

Our DL algorithm performed better than 2 fellow-
ship-trained POCUS experts in identifying key anatomic
structures on transverse US images of the UE. When
only blood vessels were considered, one of the POCUS
experts slightly outperformed all 4 YOLOv3 variants,
but one algorithm was just behind the expert. This per-
formance by the DL algorithm was somewhat surprising,
given that researchers used publicly available US video
sources rather than a large database, as can be obtained
for DL studies of chest radiography, computed tomogra-
phy, and magnetic resonance imaging.20,21 In fact, to our
knowledge, no such databases are available, which makes
POCUS DL algorithm development more challenging
for researchers who do not have access to large US

Blaivas et al—Deep Learning Algorithm to Identify Vessels, Nerves, Tendons, and Bone

J Ultrasound Med 2020 5



databases. Our results suggest that even sourcing videos
from highly varied public domain open-access sources
can deliver good results. Additionally, unlike data from
just a single medical center, which is likely to have a lim-
ited variety of US machines, we were forced to use data
from a broad range of US equipment, which resulted in
a more robust and widely applicable algorithm.

Surprisingly, longer training did not necessarily
translate into better performance for the DL algorithms.
The best overall performance was attained by a
YOLOv3 algorithm with 25 epochs of training and one
with 54 epochs of training. The most extensively trained
algorithm, with 60 epochs of training, came in second
behind these two. In the case of blood vessel identifica-
tion, the 54-epoch–trained algorithm performed the best
but was second to one of the POCUS experts. Overall,
the DL performance suggests that it can be used in real
clinical settings for vessel identification to aid novice
providers in finding cannulation targets. This will need
to be explored further in prospective randomized stud-
ies. However, the YOLOv3 algorithm we developed was
able to label structures in real-time video, suggesting that
clinical use is not a far stretch.

This study had a number of limitations, including
having to source data from a variety of public domain
open-access sources with highly varied equipment, image
quality, and US machine types. However, this is also one
of the potential strengths of our algorithm and increases
its robustness for real-world use. We did not test our DL
algorithm performance in actual patients or in the hands
of real novice providers. However, this work lays the
foundation for actual clinical testing and application.

In conclusion, a DL algorithm in this study out-
performed 2 POCUS experts in identifying 4 key
anatomic structures in transverse US images of the
UE. One POCUS expert narrowly beat the algorithm in
blood vessel identification. The AUCs for the DL algo-
rithms suggested good performance compared to ground
truth anatomic labeling. Future studies should evaluate
real-time algorithm performance in actual clinical settings.
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