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Recent applications of artificial intelligence (AI) and deep learning (DL) in
health care include enhanced diagnostic imaging modalities to support clinical
decisions and improve patients’ outcomes. Focused on using automated DL-
based systems to improve point-of-care ultrasound (POCUS), we look at
DL-based automation as a key field in expanding and improving POCUS appli-
cations in various clinical settings. A promising additional value would be the
ability to automate training model selections for teaching POCUS to medical
trainees and novice sonologists. The diversity of POCUS applications and ultra-
sound equipment, each requiring specialized AI models and domain expertise,
limits the use of DL as a generic solution. In this article, we highlight the most
advanced potential applications of AI in POCUS tailored to high-yield models in
automated image interpretations, with the premise of improving the accuracy
and efficacy of POCUS scans.
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Deep learning (DL) is a form of machine learning (ML),
which is the science of training computers to perform tasks
not by being explicitly programmed but, rather, through

enabling them to study patterns within data (Table 1).1 The
concept of ML dates back to the 1950s; however, it is only with
the recent dramatic increase in the availability of both data and
computing power that it has become possible to implement ideas
such as DL.2

In the past several years, DL has become a burgeoning tech-
nology in the field of medical imaging.3 This technology can boost
multiple functions in an objective manner, which can assist in both
image diagnostics and image enhancement. These models have
well-documented use in imaging modalities such as computed
tomography (CT) and radiography.4–7

Point-of-care ultrasound (POCUS) imaging is an optimal
application for DL techniques because it encompasses a wide vari-
ety of applications and a diverse group of users with a substantial
disparity of training. The binary nature of most POCUS studies
removes the burden of evaluating for all possible pathologic condi-
tions imaged by the ultrasound (US) machine and allows focus on
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a limited number of diagnoses. Once trained, the
model takes in an image as input and can classify
pathologic findings as 0 or 1 with a measure of confi-
dence.8 In particular, this solution can be fully auto-
mated and is able to process images quickly for
accurate and objective detection of life-threatening
and time-sensitive conditions such as pneumothorax,
hemothorax, cardiac standstill, pericardial effusion,
tamponade, and abdominal free fluid. Accurate identi-
fication of these pathologic findings is important in
management of trauma patients, informs numerous
complex management decisions, and, as such, is an
attractive subject for DL techniques.

The goal of this article is to highlight the use of
DL in POCUS imaging and to provide an overview
of the practical use of DL for purposes of POCUS
applications. The diversity of POCUS applications
and protocols, each requiring specialized AI models,
algorithms, and software technology, limits the use of
DL as a general-purpose solution for all applications.
Therefore, in this article, we highlight the most
advanced potential applications of AI in POCUS tai-
lored to high-yield models in automated image
enhancement and interpretations of POCUS scans.
We will also discuss the novel applications of DL in
POCUS practice such as its use in disaster response,
prehospital care, global health, and medical
education.

Deep-Learning Technology

Although artificial intelligence (AI) is the broader
concept of the ability of computers or machines to
perform intelligent tasks or functions, DL is an exam-
ple of a narrower application of AI in which machines
are fed data and are then capable of learning from
that data largely by themselves (Table 1). Artificial-
intelligence systems generally use ML algorithms;
these consist of 2 parts. The first part, feature extrac-
tion, is the conversion of raw data into a suitable
internal representation (ie, features). A learning sub-
system can then use this representation to perform a
second task, such as pattern classification.9 For most
of its history, ML required careful hand engineering
of features and domain expertise to design feature
extractors.9 Deep learning has been able to substan-
tially improve the accuracy of these systems because

Table 1. List of Common Terms and Definitions in ML

Term Definition

Algorithm A set of rules to be followed to perform a
specific task

Machine
learning

A field of computer science that deals with
teaching computers to perform tasks by
giving them the ability to study patterns in
data, without being explicitly
programmed

Deep learning A type of ML that learns on its own how
best to represent data as a hierarchy of
concepts, with each concept defined
through its relation to simpler concepts1

Artificial
intelligence

The theory and development of computer
systems to perform tasks that are
associated with human intelligence

Features Each input piece of data or example fed
into an ML model can be represented as
a collection of 1 or more features

Classification Assigning an input example to 1 or more
predefined classes

Model
architectures

The precise description of the
computational operations that comprise
an ML model and how they are
connected to one another, effectively
describing the flow of information
through it

Neural network A network composed of nodes or “neurons”
that each perform a computational
operation and through which information
flows by means of weighted
interconnections; to learn to perform a
specific task, these weights can be tuned

Convolutional
neural network

A special kind of neural network that uses a
mathematical operation called
convolution that is particularly suited for
the type of patterns normally found in
imaging data

Model training Tuning of model parameters through
repeatedly passing training data through
a model and minimizing errors as
measured by an objective function

Inference Passing data through a trained model to
obtain a valuable output

Model parameter A parameter whose value is learned during
training

Model
hyperparameters

A parameter whose value is set before the
model begins training

Learning rate The rate at which the optimization function
guiding the training process progresses
at each step of training

Validation set Data that are not directly trained on but
are used for assessing the training
progress

Test set Data that are not used at all during the
training process and are only used to test
performance of a trained model
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it creates an efficient mechanism to learn both opti-
mal feature representations as well as an appropriate
classifier for a given task. It does so by automatically
learning a hierarchical representation of high-
dimensional complex data, in which each learned con-
cept is defined by its relationship with simpler
concepts.1 However, the trade-off for this level of
automation is the requirement for much larger train-
ing data sets and greater computational power, chal-
lenges that have recently become easier to overcome.

At the implementation level, DL covers a wide
class of model architectures, most of which fall under
the category of a neural network. Neural networks are
so named because their functionality loosely resem-
bles a network of neurons. In these networks, each
neuron receives an input, applies an activation func-
tion, and forwards it along to the neurons in the next
layer of the network on the basis of certain connec-
tion weights that are learned by the system. The final
output of this network is usually either a class label or
a score.

There are several neural network architectures
that use a DL approach. One popular class of exam-
ples is that of convolutional neural networks
(CNNs).10 They use a special kind of mathematical
operation called convolution that is particularly suited
for the type of patterns that are commonly present in
imaging data. By using multiple layers of neurons,
they are able to capture complex patterns within an
image in a hierarchical fashion.1 This allows CNNs to
efficiently detect elaborate yet distinctive features in
an image that are difficult to capture by using a sim-
pler approach.

The application of CNNs in the field of image
and video processing has increased considerably in
the past 6 years. This has been facilitated by easily
accessible, free, open-source (software code that is
publicly available) software packages such as Tensor-
Flow (TensorFlow 1.4; Google, LLC, Mountain
View, CA), Cognitive Toolkit (Microsoft Corpora-
tion, Redmond, WA), PyTorch, Caffe (University of
California, Berkeley, CA), and MXNet (Apache Soft-
ware Foundation, Forest Hill, MD) for rapidly imple-
menting and fine-tuning DL models.6,11,12 Within
medical imaging, a large variety of use cases have
been reported from almost every aspect of medical
image analysis, including detection of pleural effusion
and cardiomegaly on chest radiography, mediastinal

lymph nodes on CT, lung nodules on CT, and detec-
tion of tuberculosis on chest radiographs.13–17

Building a DL Model

Each node in a DL model (such as a CNN) repre-
sents a mathematical operation, and the connections
represent the strength of the interaction between the
nodes. When an image is sent through the network, it
undergoes each of these operations, with the end
result (such as a classification) being produced at the
output.9

Deep-learning models need to be trained before
they can be used for inference or prediction. The
training of the network refers to the tuning of the
weights that describe the strength of these connec-
tions. To achieve this, the training data are passed
through the network in batches, and the weights are
slowly optimized on the basis of the error produced
at the output. Model hyperparameters that control
the training process such as the parameter learning
rate, initialization conditions, etc are manually set
(or iterated through) to tune the training process. It
is also common to cycle through different network
architectures during the training process, although the
search is normally limited to known well-functioning
architectures (eg, VGGNet [Visual Geometry Group,
University of Oxford, Oxford, England], Inception
[Google, LLC], and ResNet-50 [Google, LLC]).

Usually around 20% of the training set is held
out as a validation set to assess the performance of
the model during training. Alternatively, a series of
models could be trained while leaving out different
subsets of the main training set for validation each
time (cross-validation). The model that performs best
would be selected for inference. Each passage of the
full training set through the network is referred to as
an epoch. Deep-learning models can often take more
than 100 epochs to train.

Once training has been completed satisfactorily,
the model can be deployed to the POCUS device or
the cloud for prediction or inference. Under the infer-
ence mode, the weights are not tuned, and each piece
of data (eg, image) is only passed through the model
once to output the result for that data. Before deploy-
ing the model, it is required to test the performance
against an independent test set. If found to be
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unsatisfactory, correction should not be attempted
with hyperparameter tuning; instead, the whole train-
ing process should be repeated from scratch. The
entire training process has been illustrated as a pro-
cess flowchart in Figure 1.

Deep-Learning Models’ Output for POCUS

The applicability of DL to POCUS can be quite diverse,
and the output produced by these models is largely
dependent on the problem that they are trained to solve.
One common application is to train a DL model for
detection or segmentation. In this case, a training set is
put together in which the structures or regions of inter-
est have been identified and manually delineated. The
model is then trained to learn from these annotations
and reproduce the same for new images. For example,
Chen et al18 used DL for segmentation of 5 different
structures in US scans. Some groups have also used DL
for image enhancement or to remove unnecessary
aspects of an image. This is seen in chest radiographs,
where a DL model can subtract the bony impression of
the ribs from the image, and then analyze the remaining
data: the appearance of the lungs.19

Alternatively, a DL model can also be trained “end
to end” for classification without distinct intermediary
steps. Becker et al20 used DL to classify breast cancer

on US imaging. This approach does not need finer
annotation as in the previous case and could work with
coarser image level labels. There are several examples of
DL being used for frame labeling in US images.20–22

In either case, the POCUS operator would only
need to provide an image, and the trained DL model
would be able to immediately return the desired out-
put, whether the outline of an organ, an enhanced US
image, or the classification of the US image along
with a confidence score. Thus, DL tools can be used
to augment the expertise of a trained diagnostic phy-
sician by automating certain repetitive elements of
the diagnosis and enabling physicians to focus on the
more challenging aspects.

Deep-Learning Applications in POCUS
Practices

Point-of-care US is an extremely useful diagnostic
modality in emergency medicine.23 Over time, US
technology has improved to become a high-quality,
rapid, and safe tool that can be used to assess diverse
medical conditions. Deep-learning models have
emerged as innovative technologies of choice in sev-
eral POCUS applications. The premise behind DL
integration is that the accuracy and efficacy of
POCUS imaging can be substantially improved by

Figure 1. Process flowchart describing the training and prediction/inference process for a DL model.
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automated image interpretation and by matching vari-
ous algorithms for a particular clinical scenario. These
models require sets of thousands of images and a
partnership with a computer engineer to help design
and build the model. Specifically, when building these
models, it is necessary to use data from a large data-
base of US images that include both normal and path-
ologic findings for the targeted conditions. The DL
functionalities in US include both image enhance-
ment and diagnostics. In the category of image
enhancement, there has been image quality improve-
ment in breast US to help a radiologist better identify
breast lesions and in carotid US to improve visualiza-
tion of arterial wall layers.24,25

The functionality of image diagnostics has been
used for the evaluation of thyroid nodules, malignant
breast tumors, cardiovascular conditions, prostate
cancer, and myositis.14–16,26,27 The potential applica-
tions of DL for cardiopulmonary POCUS examina-
tions and examples are summarized in Tables 2
and 3.

Disaster Response
Adopting new strategies and using existing technol-
ogy to diagnose and treat patients in mass casualty
incidents will save lives and limit morbidity. Point-
of-care US has become a powerful tool for health
care providers to use in disaster response
medicine.28,29

Ultrasound machines are becoming increasingly
available to emergency care providers and can be crit-
ically important during a mass casualty incident, when
access to other imaging modalities is limited by
patient volume, time, and resources. In the setting of
disaster response, POCUS has been used to diagnose
bony fractures, abdominal free fluid, and pneumotho-
rax.29,30 Typically, these images are either interpreted
on scene by a qualified sonologist or transmitted to a
medical institution for interpretation.31

Diagnostic US techniques have been established
for the detection of life-threatening cardiothoracic
and abdominal injuries in individuals. Integrating DL
models based on individual cases and applying them

Table 2. Applications and examples of Deep Learning in Cardiac POCUS

Detection and Prediction
Automation

A. Estimation of cardiac ejection fraction with associated B-lines
B. IVC caliber and collapsibility in predicting fluid responsiveness
C. Assessment for cardiac tamponade in patients with pericardial effusion
D. Prediction of the total volume of a pleural effusion from a 2D sample
E. Detection of cardiac standstill and survival odds

Intelligence Augmentation A. A deep 3D residual CNN for reduction of false-positive scans in assessment of regional wall motion
abnormalities

B. AI interpretation and guidance of TEE in the field for EMS
C. DL of the spatial characteristics of wall motion abnormality and tissue doppler for risk stratification of

acute coronary syndromes
D. Extraction of left ventricular ejection fraction from various types of cardiac scans using DL

Automated Image
Segmentation,
Measurement, Labelling

A. Automated labeling and annotation of cardiac images for students’ self-directed learning
B. Automated determination of cardiac pacemaker capturing from cardiac ultrasound
C. Automated mining of large-scale valvular lesion annotations and global lesion detection with DL

Improving Decision Support
System

A. Automated prediction of fluid responsiveness using dynamic preload indices RUSH protocol-based
images in patients with shock

B. AI-enhanced prediction algorithm for trans-esophageal echocardiography in patients with cardiac or
respiratory arrest to guide resuscitation

C. Automatic determination of fine ventricular fibrillation to identify responders to cardiac defibrillation

Assessment of Image
Quality

A. Instant quality assessment (QA) of an image before transmitting for a manual QA process
B. Recognition of suboptimal images in real-time in predicting accuracy of the diagnosis
C. Automation of QA of cardiac US using CNNs for credentialing residents and faculty

Data Mining for Research A. Development of an image search engine which could permit searches using images directly as an input
B. Creation of large databases of different patients with similar pathology such as pulmonary infarction
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in the mass casualty situation can improve triage and
more effectively allocate resources.

Achieving true “real-time” image interpretation
would be a valuable addition to the current practice of
POCUS during disaster response. It will allow pro-
viders with limited training to use the technology in
their response plan and will expand POCUS in this
setting far beyond the ranks of physicians, who are
often not the first responders in a disaster. This inte-
gration could improve image quality in small handheld
devices, decrease the time needed for interpretation,
and improve accuracy in diagnostics. These features
could provide benefits in the chaotic and time-
sensitive nature of a disaster response, making it easier
for providers on scene to properly triage and care for
their patients.

Prehospital Emergency Care
One of the most promising applications of real-time
image interpretation is real-time detection of pathologic
conditions, which can be used to expand and
strengthen prehospital POCUS applications. For exam-
ple, detection of free fluid in the chest and abdomen in
trauma patients and accurate detection of cardiac stand-
still in patients with cardiac arrest by any responder at
the scene could help improve patient care.

In some locations, prehospital POCUS is cur-
rently used during the transport of patients to

emergency medicine care settings.32,33 Ultrasound
can be used in the prehospital setting to assess the
severity of illness or injury during transport. This has
implications on triage and resource allocation and can
provide the emergency department with valuable
information before patient arrival.34 To date, US has
been used in both ground ambulance and aeromedi-
cal transport of patients to a hospital.35 Flight crews,
emergency medical technicians, and paramedics are
usually trained to use US through a curriculum that
combines didactics and hands-on use of the technol-
ogy.36 In the aeromedical setting, in which space and
noise constrain and limit physical examination and
auscultation, US can be extremely useful for identify-
ing conditions such as pneumothorax.37 Coupled with
the fact that the use of POCUS has no negative effect
on flight time, this tool can be very helpful for provid-
ing information to the trauma team to better prepare
for a trauma patient’s arrival. Despite the benefits, the
use of POCUS in the prehospital setting is not yet
widespread.38 These low use rates have been attrib-
uted mostly to equipment and training costs. In addi-
tion, there is a lack of widespread evidence for
POCUS efficacy in the prehospital setting, which pre-
vents uptake of US into practice.38

The use of DL models in providing automated
interpretation of images in prehospital POCUS appli-
cations can help overcome challenges associated with

Table 3. Applications and examples of Deep Learning in Pulmonary POCUS

Detection and Prediction
Automation

A. AI-enhanced lung ultrasound in discriminating viral and bacterial pneumonia
B. Semi-supervised DL analysis of lung scans and incorporation of the BLUE algorithm
C. AI-enhanced classification of lung consolidation in differentiating atelectasis from pneumonia
D. Risk stratification of patients with COPD based on DL
E. Detection of pneumothorax in the field by EMS providers

Intelligence Augmentation A. Estimating the size of a pneumothorax based on the location of a lung point
B. AI assessment of lung US artifacts in the diagnosis and classification of COPD
C. RV assessment for the screening of pulmonary embolism
D. DL-based estimation of the size and volume of pleural effusions
E. DL for biomarker regression: application to BNP on lung US

Automated Image
Segmentation, Labelling

A. Holistic segmentation of the lung ultrasound from cine images
B. Real-time scan assistance for cardiac and lung ultrasound
C. Augmenting electronic POCUS teaching files to facilitate comparison of an obtained images with normal

or pathological findings

Improving Decision Support
System

A. Prediction of antibiotic response from US lung images based on DL techniques
B. AI-enhanced lung assessment in identifying active cases of tuberculosis
C. Prediction of the best insertion site for a thoracentesis
D. Comparing US images in response to therapeutic interventions such as lung pattern before and after

positive pressure ventilation
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training. If a DL model could be applied to create a
diagnostic and treatment protocol using a sonologist’s
acquired US images, it could allow even a novice US
user to make effective care management decisions
using POCUS. This has obvious advantages for
improving the objectivity of the analysis and reducing
interexaminer variability. In practice, DL models
could also improve diagnostic accuracy to help
enhance decision making for appropriate transport
and triage.

Medical Education
Ultrasound is increasingly being used to enhance
medical student education throughout the world. Its
effectiveness as a tool has been demonstrated in
teaching medical student anatomy and diagnostic
skills.39–41 Medical students at varying levels of train-
ing have demonstrated proficiency with the machine
and rapidly acquired skills with as little as 1 week of
US training.40 With the increase of POCUS in clinical
settings, it has become essential for medical students
and resident physicians to have a strong foundation
in this imaging modality.

Systematic US education both requires and
encourages heavy faculty participation. This require-
ment can be challenging, as many departments have
only recently embraced POCUS and have faculty who
are US learners themselves. By converging image inter-
pretations and clinical analytics, images no longer need
to undergo a quality assurance process to deliver
insights. This gives instructors and administrators more
time to concentrate efforts on teaching strategies, clini-
cal integration, and decision-making processes.

Autonomous POCUS interpretation will substan-
tially enhance medical education. The use of DL
models in US for medical education has the capacity
to help medical students learn more actively. A DL
model that can enhance image quality and remove
background “noise” could help medical students train
their eyes to look for the specific features on which
the model focuses. In addition, with computer-aided
diagnostics, the DL model could assist medical stu-
dents to better discern pathologic findings in imaging.
When teaching medical students with DL models,
however, it will still be extremely important to teach
proper scanning techniques, including probe position-
ing and movements, so that the model will be able to
accurately analyze the images.

The distinguishing feature of these automated
learning systems is that the images obtained by
trainees would be automatically labeled, and when
a pathologic finding is encountered, immediate
feedback could be given to the student, enhancing
learning. In certain conditions, prognostic informa-
tion on pathologic findings in prediction of mortal-
ity and morbidity could be determined. For
example, a regression model might output a predic-
tion or score representing the posttest probability
of respiratory failure and the need for intubation
and mechanical ventilation after lung imaging and
cardiac scans.

Global Health
The use of POCUS from a global health perspective
is advantageous as US becomes more portable and
inexpensive.42 The ability to provide US imaging in
resource-limited environments can provide a unique
perspective to medical providers and vastly improve
their access to critical information for the medical
decision-making process.43 Ultrasound in developing
countries has proved to be effective in obstetrics,
trauma, cardiac and surgical emergencies, and proce-
dural guidance,42 coupled with the fact that medical
professionals have been successful in implementing
programs in developing countries to train providers
with limited medical training to conduct US
scans.44–46 Perhaps with the introduction of DL
models, these capabilities can be expanded even fur-
ther. The training of nonmedical professionals can be
bolstered with models that provide accurate interpre-
tations of scans with minimum training needed. Addi-
tionally, automated detection of certain conditions
such as pulmonary and extrapulmonary tuberculosis
(periaortic lymph nodes and splenic and hepatic
lesions) with POCUS may facilitate screening and
evaluation efforts in tuberculosis-prevalent areas with
limited access to sonologists. There are similar bene-
fits in detecting valvular lesions in cases with sus-
pected rheumatic heart diseases. There have been
efforts in other medical imaging domains as well. For
example, Zhu et al47 looked at ways of using DL to
improve imaging quality and speed for scans with a
low signal-to-noise ratio. These models could also
learn reconstruction without using domain expert
knowledge.
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Consumer Use

Although quite forward looking, it is likely that auto-
mation of US diagnostics will lead to consumer use of
this technology. As the level of medical training
required to perform an evaluation is driven to a mini-
mum, consumer use is the next logical step. Much like
glucometers and urine and streptococcal throat tests
before them, diagnostic US devices will likely find
their way to virtual or actual store shelves for con-
sumer purchase. The price point will be a critical
linchpin to enable such a transition as well as nearly
full automation, including operator guidance. Both
are already within sight if one only observes current
technology ready to go on sale in the market and
future plans announced by several US companies.

An AI-driven, highly portable, and inexpensive
device that plugs into a consumer’s smartphone or
tablet would allow diagnosis of some conditions at
home, without the need to visit a physician’s office or
emergency department. Additionally, and likely an
intermediate step, is the use of such devices for home
monitoring of high-risk patients such as those with
congestive heart failure or emphysema, who are fre-
quent users of medical facilities and would benefit
from early interventions in response to data obtained
at home.

It is worth mentioning that the introduction of
DL models in the context of POCUS will be a disrup-
tive innovation to current standard processes. There-
fore, it is prudent to consider the effect on clinicians
who will interact with this technology. From a user
standpoint, the implemented DL technology must be
easy to use and practically fit into the physician’s nor-
mal daily work flow to maximize its use. This may
include requirements for how to document the use of
DL in the clinical decision-making portion of a patient
chart, privacy considerations related to the centralized
data set, and even reimbursement or billing rules.

Current Market Landscape

The current technological capabilities and available
resources are very favorable for implementation of
DL models in US practice. Critically important is that
fact that US use by clinicians has expanded exponen-
tially, making the tool widely available. As far as

available revenue, a POCUS machine can be pur-
chased for as little as $25,000, and a high-end
machine may sell for up to $115,000.48 Furthermore,
the field of US has been further primed for expansion
by the availability of handheld US machines. Devices
combining handheld use and DL models have already
been introduced into the market. For example, the
Butterfly iQ (Butterfly Network, Inc, Guilford, CT), a
small US device that can display US images and
videos on an iPhone,49 and the Venue US system
(GE Healthcare, Chicago, IL) have integrated DL
models for certain applications that allow novice users
with minimal training to make interpretations for
some cardiac, musculoskeletal, and obstetric applica-
tions. This ubiquity of technology has allowed their
use to outweigh the training expenditure. Whereas
training of a user to effectively master the skills of US
can take many years of didactic and clinical applica-
tion, a DL model would allow for medical profes-
sionals to quickly hone their skills while effectively
using POCUS. In addition, teaching basic skills of
scan acquisition does not necessarily make trainees
competent in image interpretation. If a DL model is
able to provide even a limited interpretation, it may
increase the use and integration of US into the medi-
cal decision-making process.

From a logistic perspective, this endeavor could be
implemented from preexisting infrastructure already in
place. For example, there are many open-source tech-
nologies such as Microsoft’s Cognitive Toolkit and Cus-
tom Vision, Google’s TensorFlow, and PyTorch.11,50–52

These technologies make DL applications with image
recognition feasible in many different capacities and to
users with a limited skill set in the field.

Finally, these models require large sets of images
for training. Fortunately, there are multiple sources
of mass data in the field. For example, QPath, one
such model, allows US users to store their images in
a central database, making retrospective queries and
quality assurance easy.53 These large data sources
would be the perfect foundation to help train an
algorithm.

How to Get Access to a POCUS DL Model

There are 3 ways to get access to DL models specific
to POCUS: (1) buy a custom model developed by a
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vendor (expensive and not flexible); (2) use an exist-
ing model, and customize/refine it with a new train-
ing set (such as Custom Vision/Object Detection
API provided by Microsoft or other vendors; less
expensive but requires some work to retrain the exist-
ing model with tagged images); and (3) develop a
custom model from scratch (expensive and requires
specialized data scientists, data wranglers, and soft-
ware developers to operationalize/integrate model
into the process).

In our opinion, developing or refining a model
is preferable but requires specific skills that are mas-
tered only by few data scientists and professionals.
Using the open-source ecosystem is not trivial, as it
requires specific knowledge of DL and the Python
programming language (Python 3.6; Python Soft-
ware Foundation, Wilmington, DE), which seems to
be the prevalent programming language in DL.

Discussion

Deep learning will affect all of medicine in the coming
years, but imaging seems particularly ripe for revolu-
tion by DL technology. Many applications are well
defined, and large amounts of imaging data already
exist in radiology servers and imaging data banks
around the world. Not surprisingly, body CT and
magnetic resonance imaging applications were some
of the first explored and already have US Food and
Drug Administration–approved algorithms that aid in
diagnosis. Algorithms that make mammography
highly sensitive and specific instead of a diagnostic
coin toss have been put into practice, and more is
to come.

Although in the traditional imaging realms such
as CT and magnetic resonance imaging, DL-produced
imaging algorithms herald improved diagnostic accu-
racy and decreased costs, in POCUS, DL holds the
key to widespread use at the lowest provider training
level. Some POCUS enthusiasts view the current pro-
gress in US technology as a pathway toward the
fabled “Tricorder” of Star Trek movies, and the most
important aspect of that progress will be automation.
As suggested already, increased automation to the
level at which the machine can direct a completely
novice user to acquire images and then interpret
those images (and possibly provide a diagnosis) will

democratize this imaging technology to the ultimate
point: that is, where anyone could use a device,
including the worried parent who scans his or her
child with a newly purchased smart device from a
local drug store to realize the child’s cough is from
pneumonia rather than a simple cold.

This path toward increasing the use of AI algo-
rithms in our medical tools will likely be turbulent,
with resistance from multiple stakeholders who have
the most to lose from changes in the status quo. For
others, who can suddenly have a safe and highly
accurate diagnostic imaging tool in their hands to
better serve their patients, it will be a positive revo-
lution. It is unlikely that AI will replace medical
practitioners; however, it is likely that medical prac-
titioners who use AI will replace those who do not.
The ultimate benefactors are those we seem to for-
get first when different silos of medicine battle each
other for turf and money: our patients, whether they
are in midtown Manhattan or in sub-Saharan Africa.
It is important for clinicians to understand how DL
is likely to change their practices and how powerful
tools such as smart handheld US devices are devel-
oped and ultimately find their way to practitioners’
coat pockets.

In conclusion, the use of DL models has begun
to transform the capabilities of medical imaging. The
potential applications in the fields of disaster
response, prehospital care, global health, and medical
education are promising. Deep-learning POCUS
models provide the potential for automated feature-
learning systems in streamlining life-threatening and
time-sensitive diagnoses in a cost-effective and time-
efficient manner. Furthering the implementation of
such algorithms on a global basis could drastically
expand POCUS applications and the use of POCUS
by less experienced providers. The ultimate effect will
be to improve clinical care and develop novel diag-
nostic work flows for screening, diagnosis, and
referral.

Although DL-enhanced POCUS applications can
help automate the making of diagnoses, we cannot
forget that it is ultimately providers’ interpretations
that should guide further workups and make clinical
decisions. In fact, the emergence of these applications
will only improve real-time image interpretations,
enabling faster and more sophisticated clinical
decisions.
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