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Abstract: Local anesthetic systemic toxicity (LAST) is a life-threatening adverse event that may 
occur after the administration of local anesthetic drugs through a variety of routes. Increasing use 
of local anesthetic techniques in various healthcare settings makes contemporary understanding 
of LAST highly relevant. Recent data have demonstrated that the underlying mechanisms of 
LAST are multifactorial, with diverse cellular effects in the central nervous system and cardio-
vascular system. Although neurological presentation is most common, LAST often presents 
atypically, and one-fifth of the reported cases present with isolated cardiovascular disturbance. 
There are several risk factors that are associated with the drug used and the administration 
technique. LAST can be mitigated by targeting the modifiable risk factors, including the use 
of ultrasound for regional anesthetic techniques and restricting drug dosage. There have been 
significant developments in our understanding of LAST treatment. Key advances include early 
administration of lipid emulsion therapy, prompt seizure management, and careful selection 
of cardiovascular supportive pharmacotherapy. Cognizance of the mechanisms, risk factors, 
prevention, and therapy of LAST is vital to any practitioner using local anesthetic drugs in 
their clinical practice.
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Introduction
Local anesthetic systemic toxicity (LAST) is a life-threatening adverse event associ-
ated with the increasingly prevalent utilization of local anesthetic (LA) techniques 
throughout various health care settings, with an incidence currently estimated to be 
0.03%, or 0.27 episodes per 1,000 peripheral nerve blocks. The evolution of LA tech-
niques, such as the emergence of high-volume fascial plane approaches,1,2 the growing 
relevance of continuous catheter techniques,3 employing multiple LA techniques in 
the same patient,4 and the use of tumescent anesthesia5 all contribute to the ongo-
ing risks of LAST. The underlying pathophysiology of LAST and its treatment have 
been the subject of significant investigation in recent years, and our understanding 
of these has evolved substantially. This article presents a contemporary perspective 
on the current state of understanding of LAST, including the mechanisms, presenta-
tion, and treatment.

Mechanisms
The mechanisms by which LAST produces its clinical manifestations can be elucidated 
from the well-described pharmacokinetics of LAs.6
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Pharmacokinetics of LAs
Peak plasma concentration of LA and the time taken to attain 
peak levels are governed by the rate of systemic absorption. 
This, in turn, is determined by the vascular supply of injec-
tion sites, as well as the mass of drug deposition.6,7 Once in 
the plasma, LA distribution to organs is determined by perfu-
sion, with well-perfused tissues such as the brain, heart, liver, 
and lungs receiving the bulk of LA mass initially.8 Within 
the plasma, it is the free portion of the drug that determines 
the clinical and toxic effects and that undergoes metabolism. 
Although aminoamide LAs such as lidocaine, bupivacaine, and 
ropivacaine are highly protein bound to α1-acid glycoprotein, 
the protein binding of aminoester LAs, including procaine 
and chloroprocaine, is so small as to be clinically unimportant 
(Figure 1). Aminoamide LAs undergo significant first-pass 
enzymatic metabolism by hepatic cytochrome P450 (CYP/
CYP450) enzymes, with variable rates depending on drug 
pharmacology. Aminoester agents undergo rapid hydrolysis by 
plasma cholinesterases, producing water-soluble metabolites 
excreted in urine.9

Mechanisms of action of LAs
LA agents exert their effect by attaching to the intracellular 
domain of the NaV channel, thereby inhibiting neuronal ion 
transfer and depolarization, and preventing neuronal trans-
mission.10 LAs may also bind to and block K+ channels, Ca2+ 
channels, the Na+–K+ ATPase channel, as well as several other 

targets.11–15 Notably, LAs can interfere with intracellular and 
transmembrane cell signaling,16–19 affecting the metabolic 
processes of cyclic adenosine monophosphate, protein kinase 
B (Akt), and 5-adeonosine monophosphate activated protein 
kinase (AMPK), among other stimulatory kinases.20–22 LAs 
have also been shown to impair mitochondrial metabolism, 
adenosine triphosphate production, inhibit the ryanodine 
receptor at the sarcoplasmic reticulum, and reduce Ca2+ 
sensitivity of myofilaments. The plethora of LA targets 
 (Figure 2) explains the complex mechanistic and clinical 
picture of LAST.

Central nervous system (CNS) toxicity
Increasing plasma concentrations of LA initially compro-
mises cortical inhibitory pathways by blockade of NaV chan-
nels, disrupting inhibitory neuron depolarization.23 Inhibiting 
these pathways leads to excitatory clinical features of sensory 
and visual changes, muscular activation, and subsequent 
seizure activity. As the plasma concentrations of LA rise, 
excitatory pathways are affected, producing a depressive 
phase of neurological toxicity, with loss of consciousness, 
coma, and respiratory arrest.

Cardiovascular system (CvS) toxicity
The multitude of aforementioned LA molecular targets 
produces complex toxic features in the CVS, including 
 conduction disturbances, myocardial dysfunction, and lability 

Figure 1 Chemical structures of ester and amide local anesthetic agents with examples of each.
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of  peripheral vascular tone. The primary effects are likely to 
arise from rhythm disturbance, with other CVS effects being 
secondary. Normal conduction is disrupted by direct sodium 
channel blockade, chiefly at the bundle of His. By driving the 
resting membrane potential to a more negative level, action 
potential propagation is impaired, leading to prolonged PR, 
QRS, and ST intervals. Re-entrant tachyarrhythmias and 
bradyarrhythmias ensue, which may be worsened by further 
potassium channel blockade, prolonging the QT interval.

Myocardial dysfunction has several contributory mecha-
nisms. Calcium channel and Na+–Ca2+ exchange pump 
blockade reduces intracellular calcium stores and, thus, 
diminishes contractility. The net result of interruption of 
Akt, AMPK, thereby interrupting insulin-driven intracellular 
glucose metabolism, along with the reduction of intracel-
lular adenosine triphosphate reserves, and impaired cyclic 
adenosine monophosphate production further contributes 
to reduced myocardial contractility (Figure 2). A direct pH-
related suppressive effect of LAs is exerted on the neuronal 
control mechanisms of baroreceptors,24 as well as a negative 
effect on systemic vascular tone.

Presentation
Although 40% of LAST presents atypically,25 CNS toxicity is 
the most common feature of LAST (68%–77%),26,27  primarily 

in the form of seizures. Diverse early manifestations have 
been described (although many are likely underreported), 
and may include peri-oral paresthesia, confusion, audio–
visual disturbances, dysgeusia, agitation, or reduced level 
of consciousness. One-third of the reported cases of LAST 
begin with CNS features that progress to involve CVS signs, 
and one-fifth of LAST episodes present with isolated CVS 
disturbances.27 Again, protean features of CVS toxicity are 
apparent, but dysrhythmias, conduction deficits, hypotension, 
and eventually cardiac arrest – most commonly of an asystolic 
nature – may be seen.28 LAST events most frequently occur 
immediately following injection of LA,29 and recent data 
demonstrate that delayed presentation may occur at various 
time points up to several days following commencement of 
an infusion.

Risk factors
The risk factors for developing LAST can be categorized 
into those that are related to the injected drug, the patient, 
or the technique.

Drug
The cardiovascular collapse/CNS (CC/CNS) ratio is “the ratio 
of drug dose required to cause catastrophic cardiovascular 
collapse to the drug dose required to produce seizures.”26 

Figure 2 Representation of key LA cellular targets contributing to local anesthetic systemic toxicity.
Notes: in the plasma membrane, LAs block the Nav channel (Na+), potassium (K+) and calcium channels (Ca2+). inhibition of second messenger systems on metabotropic 
transmembrane G-protein-coupled receptors leads to inhibition of eRK and pi3K. This leads to dysregulation of downstream kinase pathways, including a reduction in Akt 
and, thus, mTOR. Mitochondrial phosphorylation of AMP to ATP is inhibited, leading to an increase in the inhibitory, energy-sensing kinase AMPK, which in turn further 
mitigates mTOR. Other inhibitory targets include PKA, calcium-dependent contractility inhibition at the sarcomere, and modulation of the RyR. Red rings represent sites of 
action of LAs. Dotted lines represent inhibitory actions.
Abbreviations: AMP, adenosine monophosphate; ATP, adenosine triphosphate; LA, local anesthetic; RyR, ryanodine receptor.
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A low CC/CNS ratio is associated with more cardiotoxic 
agents,30 while LAs with a higher CC/CNS ratio have a 
greater safety margin. This is because the earlier presentation 
of CNS features may expedite earlier diagnosis (and thus, 
treatment) of LAST before cardiovascular collapse ensues. 
Ropivacaine and levobupivacaine, for example, have higher 
CC/CNS ratios than racemic bupivacaine; therefore, it seems 
logical to preferentially use these drugs when long-acting 
LAs are desired. Vigilance is always required, however, as 
all LA drugs may cause LAST.28,31,32

LAs also have differing intrinsic vasoactive effects. 
Levobupivacaine and ropivacaine have dose-dependent 
vasoactive properties that may potentially prolong duration 
and slow systemic absorption, as opposed to bupivacaine 
which has vasodilatory properties and may lead to more rapid 
systemic absorption.

The appropriate dose of LA should be the lowest dose 
that achieves the desired duration and extent of analgesia 
or anesthesia.25 A given dose of LA will be associated with 
inter-individual variation in plasma concentrations depending 
on the site and speed of administration or patient demograph-
ics. Such observations have questioned per kilogram and 
maximum recommended doses in adults,33 particularly as 
the maximum weight-based dose varies between countries 
and texts. However, these serve as a useful reference and 
maximum doses should be adhered to, especially in patients 
with low body weight (Table 1).

Patient
Age
Patients at the extremes of age have consistently been shown 
to be at the greatest risk of LAST.27 Neonates and infants have 

reduced plasma concentrations of the binding protein α1-acid 
glycoprotein and immature hepatic enzyme systems that may 
increase the free fraction of LA in the plasma. Dosing should, 
therefore, be reduced by 15% in patients <4 months of age.

Elderly patients have reduced clearance of LA due to 
reduced metabolic organ perfusion and pharmacodynamic 
function, thereby increasing the potential of drug accumula-
tion with repeated boluses of LA or continuous infusions. 
Elderly patients may have multiple comorbidities, and degen-
erative changes might render the elderly more susceptible 
to the systemic effects of LA, despite relatively unchanged 
levels of protein binding. As the skeletal muscle may act as a 
reservoir for LA, reduced skeletal muscle mass has also been 
implicated in increasing the risk of LAST.27 It seems reason-
able, therefore, to suggest a dose reduction of 10%–20% in 
these patients.26

Pregnancy
Parturients have reduced plasma concentrations of α1-acid 
glycoprotein and an increased cardiac output. Together, 
these lead to accelerated perfusion of injection sites, rapid 
LA absorption, and higher peak free LA concentrations. 
Additionally, epidural venous engorgement may increase the 
drug absorption and/or the possibility of catheter migration. 
For the combination of aforementioned reasons, parturients 
are at an increased risk of LAST, and therefore, it is recom-
mended that doses of peripheral and central neuraxial LAs 
be reduced.33

Renal disease
Patients with severe renal disease not only have a hyperdy-
namic circulation and reduced clearance of LAs, but also have 
an increased α1-acid glycoprotein concentration. As a result, 
free plasma concentrations are largely unchanged and dose 
reduction is often unnecessary, unless the patient is uremic 
with metabolic acidosis.34,35

Cardiac disease
Patients with cardiac disease are at an increased risk of 
LAST. Those with pre-existing conduction disorders may be 
predisposed to cardiovascular toxicity, and careful dosing as 
well as the use of less cardiotoxic drugs such as ropivacaine 
or levobupivacaine is recommended.

Patients with severe cardiac dysfunction are particu-
larly susceptible to LA-induced myocardial depression and 
arrhythmias due to reduced hepatic and renal perfusion lead-
ing to reduced metabolism and elimination, respectively. Poor 
perfusion to the injection site may reduce the peak plasma 

Table 1 Suggested dosing recommendations for commonly used 
local anesthetic agents

Local  
anesthetic

Plain With epinephrine

Maximum  
dose

Maximum  
dose

Maximum  
dose

Maximum  
dose

Bupivacaine 2 mg⋅kg–1 175 mg 3 mg⋅kg–1 225 mg
Levobupivacaine 2 mg⋅kg–1 200 mg 3 mg⋅kg–1 225 mg
Lidocaine 5 mg⋅kg–1 350 mg 7 mg⋅kg–1 500 mg
Mepivacaine 5 mg⋅kg–1 350 mg 7 mg⋅kg–1 500 mg
Ropivacaine 3 mg⋅kg–1 200 mg 3 mg⋅kg–1 250 mg
Prilocaine 6 mg⋅kg–1 400 mg 8 mg⋅kg–1 600 mg

Notes: Data from Berde and Strichartz.92 Dadure C, Sola C, Dalens B, Capdevila 
X. Regional anesthesia in children. in: Miller RD (ed.). Miller’s Anesthesia, eighth ed. 
Philadelphia: elsevier; 2015:2718.93 American Academy of Pediatrics; American 
Academy of Pediatric Dentistry, Cote CJ, wilson S; work Group on Sedation. 
Guidelines for monitoring and management of pediatric patients during and 
after sedation for diagnostic and therapeutic procedures: an update. Pediatrics 
2006;118:2587–2602.94
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concentration of LA, but if the circulation time is prolonged, 
the detection of an intravenous injection of LA (by detection 
of a tracer substance such as epinephrine) may be delayed. 
Dose reduction is unnecessary in mild–moderate heart failure 
where tissue perfusion is preserved, but is recommended in 
severe heart failure.33

Hepatic dysfunction
Isolated hepatic dysfunction per se does not necessitate dose 
adjustment for single-shot regional anesthetic techniques 
despite a reduced hepatic clearance of LAs. A larger volume 
of distribution and maintenance of α1-acid glycoprotein 
synthesis provide a safety margin in patients with hepatic 
disease. However, in patients receiving repeated boluses or 
continuous infusions of LA, or those with coexisting cardiac 
or renal disease, dose reduction is recommended.26

Technique
Data from large registries and published case reports indicate 
that the risk of LAST differs between block types. Vasques 
et al36 and Gitman and Barrington27 have summarized the 
published case report data between 2010 and 2014 and 
between 2014 and 2016, respectively, identifying a total 
of 125 cases. As a group, LA infiltration techniques were 
most commonly implicated, accounting for 20% of events. 
This was followed by central neuraxial blocks (epidural 
and caudal) in 15% and continuous infusion of LA in 13% 
of events. Possible  factors that may have influenced these 
results include the dose of LA typically administered and 
the vascularity of the site involved. A notable proportion of 
events (18%) occurred following penile blocks in children, 
and is likely the result of a confluence of factors that include 
a more susceptible patient population, injection into a highly 
vascular area, and the use of doses close to the maximum 
recommended limits.37

In an analysis of >25,000 peripheral nerve blocks from 
the Australian and New Zealand Registry of Regional Anes-
thesia database,38 the calculated risk of LAST with lower 
limb blocks (no events reported) was significantly lower than 
that of upper limb blocks, which was in turn lower than that 
for paravertebral blocks. This again may reflect the relative 
vascularity of the sites of injection and the corresponding 
plasma concentration of LA that results from a given dose.39

Fascial plane blocks
Fascial plane blocks have become increasingly popular in 
recent years as a method of providing regional anesthesia of 
the torso. Most studies pertain to the transversus abdominis 

plane (TAP) block, but they all share the common charac-
teristic of large-volume (>20 mL) LA injection into a fascial 
intermuscular plane. As muscles generally have a rich vascu-
lar supply, there is a significant risk of LAST from systemic 
absorption of LA. The time to peak plasma concentration 
following a TAP block is 30 minutes on average, but can 
be as long as 90 minutes in some individuals.40–43 This may 
also vary with the type and site of block; for example, the 
rectus sheath block has been shown to have a consistently 
longer time to peak concentration (60 minutes) compared 
to the TAP block.41,42 Although most studies report that the 
average maximum LA plasma concentration following TAP 
block with commonly used dosing regimens falls below the 
generally accepted toxic threshold, there are consistently 
individuals in whom this is approached or exceeded.40,43–45 
Epinephrine reduces the systemic absorption and the maxi-
mum LA plasma concentrations – even for ropivacaine – 
and thus should always be added to the LA solution where 
possible.43,45 Lower concentrations and doses of LA should 
also be used, particularly if epinephrine is omitted.46 The 
American Society of Regional Anesthesia and Pain Medicine 
guidelines further recommend that dosing should be based 
on lean body weight.47

Continuous catheter techniques
The risk of LAST appears to be higher with continuous 
peripheral nerve blockade compared to single-shot tech-
niques,48 and this is likely related to the accumulating dose 
of LA. One study of bilateral TAP block catheters found 
that a 10 mL⋅h–1 infusion of 0.2% ropivacaine, initiated 30 
minutes after a loading dose of 100 mg ropivacaine per side, 
resulted in a continuing rise in plasma concentration up to 
48 hours.49 There was wide interindividual variability, with a 
large number of subjects having total concentrations exceed-
ing the toxic threshold. However, it was reassuring to note that 
the unbound ropivacaine concentration was much lower and 
remained well below toxic threshold. This was linked to the 
post-surgical rise in acute phase reactive α1-acid glycoprotein 
and suggests a reasonable margin of safety when infusions 
are used in the clinical context.

/RFDO�LQÀOWUDWLRQ�DQDOJHVLD��/,$��LQ�WRWDO�MRLQW�
arthroplasty
LIA is an increasingly popular technique that involves high-
volume periarticular LA infiltration by surgeons, usually in 
the context of joint replacement surgery. Available studies in 
total hip and knee arthroplasty indicate that the average peak 
LA plasma concentrations remain below toxic thresholds.50–53 
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However, as usual, significant interindividual variation 
means that this threshold can be crossed, and LAST has been 
reported.54 Absorption is higher in total hip arthroplasty than 
total knee arthroplasty,53 and LA dosage should be reduced 
accordingly. There is presently no available pharmacoki-
netic data related to LIA for shoulder arthroplasty, but it is 
worth noting that the baseline incidence of LAST is higher 
compared to lower limb arthroplasty.55 Prolonged vigilance 
remains essential, given that the time to peak plasma con-
centrations can vary from 2 to 6 hours, and that the patient 
population is often elderly with multiple comorbidities that 
render them more susceptible to LAST.

Liposomal bupivacaine
Published data in the peer-reviewed literature on the risk 
of LAST with liposomal bupivacaine remain scarce. It is 
reassuring to note that the maximum plasma concentra-
tions of bupivacaine at the maximum US Food and Drug 
Administration- recommended dose (266 mg or 3.8 mg.kg–1) 
remains well below toxic thresholds,56,57 and that intravascular 
injection appears safer compared to non-liposomal bupiva-
caine preparations.58 Nevertheless, it must be noted that these 
studies do not take into account the common clinical practice 
of combining liposomal bupivacaine with plain bupivacaine 
and other LAs to hasten analgesic onset. It is well recognized 
that interaction between the LAs can cause premature release 
of bupivacaine from the liposomes,59,60 and the manufacturer 
recommends against injecting any other LA <20 minutes after 
administration of liposomal bupivacaine. An article drawing 
on the US Food and Drug Administration’s Adverse Event 
Reporting Data cautioned that there was a likely association 
with LAST based on 130 cases reported between 2012 and 
2016; they also cited two case reports that were not in the peer-
reviewed literature. The presentation of toxicity mirrors that 
reported from bupivacaine hydrochloride-induced LAST.61

Tumescent local anesthesia
Tumescent anesthesia for plastic surgical procedures such 
as liposuction involves the injection of extremely large vol-
umes of lidocaine into subcutaneous tissues, usually with 
the addition of epinephrine for added safety. The American 
Society for Dermatologic Surgery Liposuction Guidelines 
recommend the maximal safe mg⋅kg–1 dosage of lidocaine as 
55 mg⋅kg–1.62 However, a more recent pharmacokinetic study 
recommends lower limits of 45 mg⋅kg–1, and 28 mg⋅kg–1 if 
liposuction is not performed.63 It should be noted that this 
recommendation does not eliminate the risk entirely, but was 
designed to lower it to acceptable levels (1:2,000). Mortality 
has been exclusively reported in patients receiving general 

anesthesia, but clinical features may be insidious and may 
present late.64 Practitioners must, therefore, remain prepared 
to recognize and treat LAST.64

Topical anesthesia of the oropharynx and airway
LAST has been reported following topical anesthesia of the 
oropharynx and airway for a variety of procedures, including 
transesophageal echocardiography65 and bronchoscopy.66,67 
The likely contributing factors68 include a perception that 
lidocaine is relatively safe, failure to monitor the doses being 
given, and increased susceptibility in patients with significant 
comorbidities. Systemic absorption of lidocaine depends, to 
an extent, on the mode of delivery. A significant proportion 
is lost to the atmosphere with nebulization and atomization, 
or swallowed and cleared through first-pass metabolism. As 
a result, the available evidence indicates that up to 9 mg⋅kg–1 
can be used safely in healthy patients.69,70

intravenous local anesthesia
Intravenous injection of lidocaine has been used for acute 
and chronic pain states, with doses ranging between 1 and 
3 mg⋅kg–1 as a bolus and 1–5 mg⋅kg–1⋅hour–1 as an infusion 
to achieve therapeutic plasma levels of 2.5–3.5 µg⋅mL–1.68,71 
Threshold serum plasma concentrations for mild toxicity and 
onset of neurological symptoms is reported to be 6 µg⋅mL–1, 
with progression to cardiovascular compromise with plasma 
concentrations >10 µg⋅mL–1,72 which is a reflection of a high 
CC/CNS ratio. Mild CNS signs are reported in up to 11% 
of patients, while cardiovascular signs arise in 4%–15% 
of patients, ranging from bradycardia to atrial fibrillation. 
Susceptible patients may exhibit LAST with lower dosing 
regimens,73,74 and careful patient selection is important in 
considering intravenous lidocaine administration.

Intravenous regional anesthesia (Bier block) is associated 
with a significant risk of major complications, with symptoms 
and signs across the entire spectrum of LAST. Seizures have 
been reported with doses as low as 1.4 mg⋅kg–1 of lidocaine, 
4 mg⋅kg–1 of prilocaine, and 1.3 mg⋅kg–1 of bupivacaine, and 
cardiac arrest at doses as low as 2.5 mg⋅kg–1 of lidocaine and 
1.6 mg⋅kg–1 of bupivacaine.75 Notably, LAST can occur even 
with an inflated tourniquet and up to 30 minutes following 
tourniquet deflation.

Others
Accumulated data from case reports, databases, and case 
series have highlighted several other risk factors for the 
development of LAST. Notably, a fifth of cases of LAST 
occur outside of the traditional hospital settings, and half of 
LAST occurs in the hands of non-anesthesiology specialists.
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Prevention
Prevention should be the priority for reducing the frequency 
and severity of LAST.47 No single intervention eliminates the 
risk, and therefore, prevention is a multifactorial process.

Ultrasound-guided nerve blockade
Ultrasound has been shown to reduce the risk of LAST by 
60%–65% as compared to peripheral nervous stimulation 
alone.38,53,76 There are several explanations for this risk 
reduction. Increased accuracy of delivery permits reduc-
tion in volume and, therefore, dose of LA; the incidence of 
vascular puncture may be reduced; and visual cues signaling 
intravascular injection allow termination of injection before 
a significant dose is delivered. However, LAST events con-
tinue to occur despite the use of ultrasound,38 and ultrasound 
guidance does not impact the risk of LAST resulting from 
systemic absorption of LA.

'UXJ�DQG�LQMHFWLRQ
Restricting the drug dosage may contribute to LAST risk-
reduction. It is advisable to perform fractionated injection of 
LA in aliquots of <5 mL, pausing for 30–45 seconds between 
injections,26 with gentle aspiration before injection. This latter 
measure is still useful despite a false-negative rate of around 
2%.47 Markers such as epinephrine may also mitigate the risk 
of intravascular injection, where addition of 15 µg⋅mL–1 will 
increase the heart rate by ≥10 beats per minute or systolic blood 
pressure by ≥15 mmHg. Practical interventions such as clear 
labeling of LA-containing syringes and meticulous handling 
of these syringes may be of benefit. The transition from Luer 
connectors to new ISO 80369 standard small-bore connecters 
might also reduce the risk of wrong route injection.77,78

Treatment
Preparation
All patients receiving injections of LA in doses sufficient to 
cause LAST should have oxygen, standard monitoring, and 
intravenous access applied. Monitoring should continue for at 
least 30 minutes after completion of injection, as delayed pre-
sentations are increasingly occurring.27,79 Immediate access to a 
LAST Management Checklist is advisable, and all medications 
and resuscitation equipment required should be immediately 
available, preferably in the form of a “LAST Rescue Kit”. 
Despite data suggesting inconsistent adherence to standardized 
protocols, the value of these guidelines cannot be understated.

immediate management
Immediate management involves the general safety and 
resuscitation measures that are essential in any emergency. 

First, stop LA injection and call for help. The immediate 
priority is to manage the airway, breathing, and circulation.

Maintain airway, oxygenation, and ventilation
Prompt and effective airway management is crucial to prevent 
hypoxia, hypercapnia, and acidosis (metabolic or respiratory), 
which are known to potentiate LAST. The airway should be 
secured and 100% oxygen administered, bearing in mind 
that hyperventilation and respiratory alkalosis have also been 
demonstrated to be injurious.80

intravenous lipid emulsion therapy
Recent advances in understanding of the mechanisms of 
action of lipid emulsion underscore the importance of this 
therapeutic modality in the management of LAST. Data sug-
gest that lipid emulsion may shuttle any LA agent from high 
blood flow organs – such as the heart or brain – to storage 
or detoxification organs such as muscles or the liver.81 Lipid 
emulsion therapy may also improve the cardiac output and 
blood pressure (hence further facilitating the shuttling effect), 
while postconditioning myocardial protection may also 
occur.82–85 There is a paucity of large-scale, high-quality data 
demonstrating the clinical efficacy of lipid emulsion therapy, 
primarily due to the difficulties in valid data collection and 
the limited feasibility of prospective studies.86,87 However, 
animal studies demonstrate strong support for the use of 
lipid emulsion therapy in reducing mortality when applied 
in conjunction with resuscitative interventions.88

Early administration of 20% intravenous lipid emulsion 
therapy should, therefore, be an immediate priority after 
airway management in any LAST event that is judged to be 
potentially serious. Convergence of the different adminis-
tration regimes between the American Society of Regional 
Anesthesia and Pain Medicine 47 and the Association of 
Anesthetists of Great Britain and Ireland guidance89 has led 
to increased consistency in therapeutic protocols. An initial 
bolus of 100 mL should be administered over 2–3 minutes 
(1.5 mL⋅kg–1 if the lean body weight is <70 kg). This is then 
to be followed by a 20% lipid emulsion infusion of 200–250 
mL over 15–20 minutes (0.25 mL⋅kg–1⋅min–1 if the lean body 
weight is <70 kg). If circulatory stability is not attained, re-
bolusing up to two further times or increasing the infusion to 
0.5 mL⋅kg–1⋅min–1 is suggested. The maximum recommended 
dose of 20% lipid emulsion is 12 mL⋅kg–1.

Seizure management
Seizure activity may exacerbate metabolic acidosis, and 
prompt prevention and termination is crucial. Due to their 
cardiostable profile, benzodiazepines are the first-line therapy. 
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Propofol should be avoided where there are signs of cardio-
vascular compromise, in view of the effect of large doses on 
depressing cardiac function, but small doses may be used. If 
seizures persist despite all efforts, low-dose neuromuscular 
blockade can be considered to reduce metabolic acidosis and 
hypoxia from ongoing muscular contraction.

Cardiovascular support
Advanced Cardiac Life Support algorithms for cardiopul-
monary resuscitation must be followed should cardiac arrest 
occur. Chest compressions should be initiated immediately 
and continued until return of spontaneous circulation. If 
epinephrine is used, small initial doses of ≤1 µg⋅kg–1 are 
preferred to avoid impaired pulmonary gas exchange and 
increased afterload.90 Vasopressin is not recommended for 
use as it has been associated with adverse outcomes in animal 
models. In the absence of rapid recovery following advanced 
life support measures and intravenous lipid emulsion therapy, 
early consideration should be given to cardiopulmonary 
bypass for circulatory support.

The inotropic effect of lipid emulsion therapy only occurs 
once the myocardial LA levels are below a threshold that 
corresponds to ion channel blocking concentrations. This 
emphasizes the importance of effective chest compressions 
to ensure coronary perfusion is sufficient to reduce LA tissue 
levels in order to obtain the benefit of lipid emulsion therapy.

If cardiac output is maintained but there are deleterious 
CVS effects – such as arrhythmias, conduction block, pro-
gressive hypotension, and bradycardia – standard Advanced 
Cardiac Life Support algorithms should be followed with 
the omission of LA, such as lidocaine, for the treatment of 
arrhythmia. Amiodarone is the first-line antiarrhythmic in 
the event of ventricular dysrhythmia.

Post-event management
Following an episode of LAST with CVS features, patients 
should be monitored for at least 6 hours, while isolated and 
rapidly terminating CNS features require patient monitoring 
for a minimum of 2 hours. It is advisable that cases should 
be reported to the registry at www.lipidrescue.org.91

Conclusion
LAST is a life-threatening adverse event, and recent advances 
in understanding the pathophysiological basis of the condition 
and its therapy will improve patient safety. It is imperative 
that practitioners who use LA in their clinical practice are 
cognizant of the mechanisms, risk factors, prevention, and 
therapeutic modalities.
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