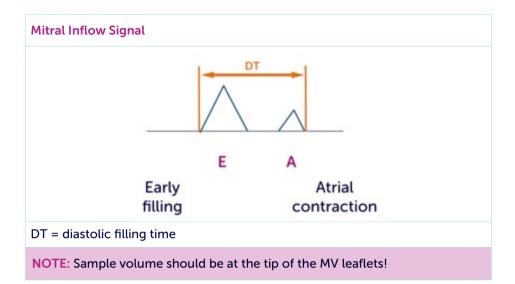
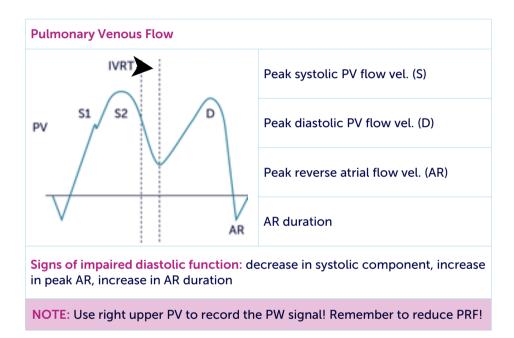

Basics of Diastolic Dysfunction

Causes				
	Aging	Dil. CMP	NOTE: Every patient with systolic dysfunction also has diastolic dysfunction	
	Left ventricular hypertrophy	Restr. CMP		
	CAD	Hypertr. CMP	dysfunction!	
NOTE: Patients with diastolic dysfunction usually have a dilated left atrium				
NOTE: Diastolic dysfunction is common and is associated with a worse prognosis				

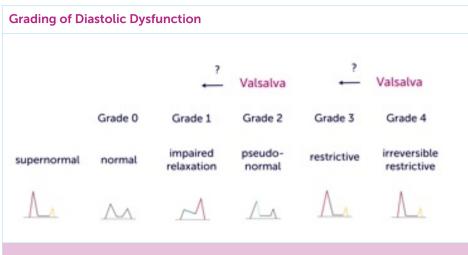


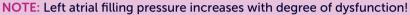
Active Relaxation (Early Diastole)			
1	Internal loading conditions	Contractility	
4	Wall stress	Atrial impedance	

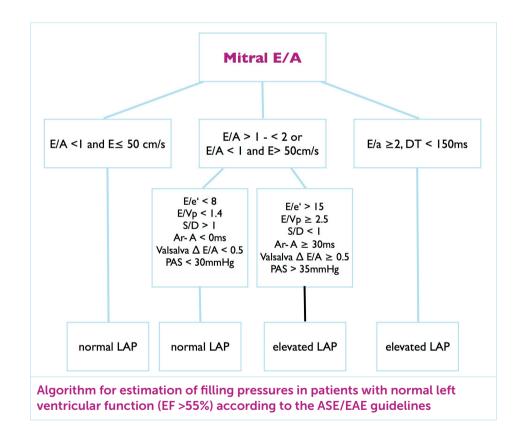

Mitral Inflow — Reference Values				
	16- 20 years	21- 40 years	41- 60 years	> 60 years
IVRT (ms)	50 <u>+</u> 9	67 <u>+</u> 8	74 <u>+</u> 7	87 <u>+</u> 7
DT (ms)	142 <u>+</u> 19	166 <u>+</u> 14	181 <u>+</u> 19	200 <u>+</u> 29
A duration	113 <u>+</u> 17	127 <u>+</u> 13	133 <u>+</u> 13	138 <u>+</u> 19
E/A	1.88 <u>+</u> 0.45	1.53 <u>+</u> 0.4	1.28 <u>+</u> 0.25	0.96 <u>+</u> 0.18

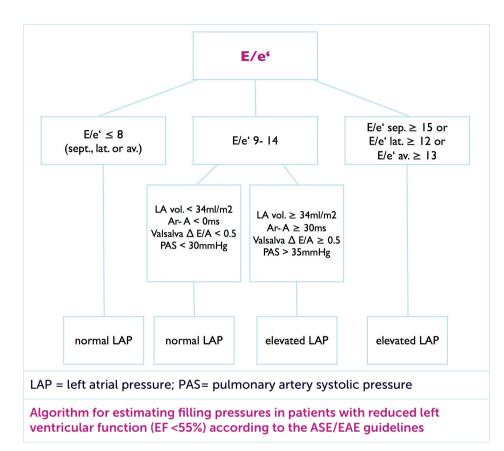
NOTE: There are situations where the parameters of diastolic function are inconsistent and difficult to interpret.

TDI Mitral Annulus – Reference Values				
	16- 20 years	21- 40 years	41- 60 years	> 60 years
Septal e' (cm/s)	14.9 <u>+</u> 2.4	15.5 <u>+</u> 2.7	12.2 ± 2.3	10.4 ± 2.1
Septal e'/a'	2.4	1.6 <u>+</u> 0.5	1.1 ± 0.3	0.85 ± 0.2
Lateral e' (cm/s)	20.6 ± 3.8	19.8 <u>+</u> 2.9	16.1 <u>+</u> 2.3	12.9 <u>+</u> 3.5
Lateral e'/a'	3.1	1.9 <u>+</u> 0.6	1.5 <u>+</u> 0.5	0.9 <u>+</u> 0.4


Situations where TDI at the mitral annulus should not be used		
Annular calcification	Mitral valve prosthesis	
Mitral stenosis	Moderate to severe mitral regurgitation	




Pulmonic Veins – Reference Values				
	16- 20 years	21- 40 years	41- 60 years	> 60 years
S/D	0.82 <u>+</u> 0.18	0.98 <u>+</u> 0.32	1.21 ± 0.2	1.39 <u>+</u> 0.47
AR (cm/s)	16 <u>+</u> 10	21 <u>+</u> 8	23 <u>+</u> 3	25 <u>+</u> 9
AR duration (ms)	66 <u>+</u> 39	96 <u>+</u> 33	112 <u>+</u> 15	113 ± 30


NOTE: Pulmonary vein flow, has many limitations and is rarely used in clinical practice

A Simple Approach to Diastolic Function/Rules

Supernormal diastolic function: If echo is normal and patient is young

Normal diastolic function: If echo is normal, pat < 45a and E>A

Impaired relaxation: If A is higher than E (E/A ratio is < 1), filling pressure is normal or mildly elevated

Pseudonormal diastolic function: If echo is abnormal (LVH, red LVF, etc) or pat > 65a and E is higher than A (E/A ration > 1)

DD Normal vs Pseudonormal: C Look at deceleration time, LA enlargement and, E/e' (≥ 8-12)

Restrictive filling: If E is twice A (E/A ratio is >2), filling pressure elevated

Perform TDI: If E/e['] is > 12-15 then filling pressure is elevated (PCWP > 12mmHg)

Perform Valsalva: Unloading of the atrium, LA pressure (LAP) drops, unmasking of pseudonormal filling (discrimination between irreversible restrictive vs. reversible restrictive)

Specific Situations

Variations in E/A Ratio		~
Changes of LV filling pressure with respiration?	COPD patients	.3
High normal filling pressures (E	E/E`= 8 - 9)	
E/A Fusion		
Tachycardia	Long systole (LBBB)	
Long AV delay	Carotid artery maneuver	

L- Wave				
$ \land $	Mid-diastolic filling of the LV	Elevated LVFP?		
	Bradycardia	Common in afib		
	Common in LVH			
ELA	NOTE: The presence of an L-Wave indicates elevated filling pressure!			

Atrial Fibrillation/Flutte		
Often associated with diastolic dysfunction	Pulm. venous flow difficult to assess	Care and a second
No A wave	E/e' increases with severity of HF	
E/e' declines with improvement of HF		

LVFP in Mitral Valve Disease

NOTE: Diastolic dysfunction/LV filling pressure	LA size does not necessarily reflect elevated LAFP	LA size can also be enlarged due to volume overload + afib
should not be assessed in the setting of MR > grade II	E wave velocity also reflects increased stroke volume	E' is reduced in MS and elevated in MR (stroke volume)

NOTE: Estimates filling pressure to determine the severity of disease and how the LV can cope with the problem (i.e. AS,AR; CMP)