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Objectives: Adequate assessment of fluid responsiveness in shock 
necessitates correct interpretation of hemodynamic changes 
induced by preload challenge. This study evaluates the accuracy 
of point-of-care Doppler ultrasound assessment of the change in 
carotid corrected flow time induced by a passive leg raise maneu-
ver as a predictor of fluid responsiveness. Noninvasive cardiac 
output monitoring (NICOM, Cheetah Medical, Newton Center, 
MA) system based on a bioreactance method was used.
Design: Prospective, noninterventional study.
Setting: ICU at a large academic center.
Patients: Patients with new, undifferentiated shock, and vaso-
pressor requirements despite fluid resuscitation were included. 
Patients with significant cardiac disease and conditions that pre-
cluded adequate passive leg raising were excluded.
Interventions: Carotid corrected flow time was measured via ultra-
sound before and after a passive leg raise maneuver. Predicted 
fluid responsiveness was defined as greater than 10% increase in 
stroke volume on noninvasive cardiac output monitoring following 
passive leg raise. Images and measurements were reanalyzed by 
a second, blinded physician. The accuracy of change in carotid 
corrected flow time to predict fluid responsiveness was evaluated 
using receiver operating characteristic analysis.
Measurements and Main Results: Seventy-seven subjects were 
enrolled with 54 (70.1%) classified as fluid responders by nonin-
vasive cardiac output monitoring. The average change in carotid 
corrected flow time after passive leg raise for fluid responders 
was 14.1 ± 18.7 ms versus –4.0 ± 8 ms for nonresponders (p < 
0.001). Receiver operating characteristic analysis demonstrated 
that change in carotid corrected flow time is an accurate predictor 
of fluid responsiveness status (area under the curve, 0.88; 95% 
CI, 0.80–0.96) and a 7 ms increase in carotid corrected flow time 
post passive leg raise was shown to have a 97% positive predictive 
value and 82% accuracy in detecting fluid responsiveness using 
noninvasive cardiac output monitoring as a reference standard. 
Mechanical ventilation, respiratory rate, and high positive end-DOI: 10.1097/CCM.0000000000003356
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expiratory pressure had no significant impact on test performance.  
Post hoc blinded evaluation of bedside acquired measurements 
demonstrated agreement between evaluators.
Conclusions: Change in carotid corrected flow time can predict 
fluid responsiveness status after a passive leg raise maneuver. 
Using point-of-care ultrasound to assess change in carotid cor-
rected flow time is an acceptable and reproducible method for 
noninvasive identification of fluid responsiveness in critically 
ill patients with undifferentiated shock. (Crit Care Med 2018; 
XX:00–00)
Key Words: corrected flow time; fluid responsiveness; shock; 
ultrasound

Fluid responsiveness assessment is defined as an increase 
in cardiac output (CO) in response to preload augmen-
tation and is used in resuscitation from shock (1, 2). 

Temporary intravascular fluid shift maneuvers such as the 
passive leg raise (PLR) test (3) transiently increase venous 
return, thus enabling the assessment of CO change with an 
intervention that mimics fluid administration. Unfortunately, 
CO monitoring technology is expensive, not widely available, 
and imprecise. New technologies to assess the hemodynamic 
response to PLR are needed.

Flow time (FT), or left ventricular ejection time, reflects the 
duration of systole and is measured from the beginning of the 
upstroke to the trough of the incisural notch on a pulse waveform 
analysis (4). Corrected for the 
heart rate variability, it is called 
“corrected FT,” and the change in 
its duration may reflect changes 
in stroke volume (SV). Point-of-
care ultrasound is noninvasive 
and increasingly available in 
critical care settings (5, 6), and 
the assessment of corrected FT 
via Doppler ultrasound (7–9) is 
a safe and simple method which 
does not require extensive ultra-
sonographic expertise by the 
operator.

In this study, we hypothesize 
that the change in carotid cor-
rected FT (∆ccFT) induced by 
a PLR maneuver may predict 
fluid responsive status in early, 
undifferentiated shock. The 
noninvasive bioreactance CO 
monitoring (NICOM; Cheetah 
Medical, Newton Center, MA) 
system was used as the refer-
ence standard as it has been 
validated in the assessment of 
fluid responsiveness in combi-
nation with PLR (10–14).

MATERIALS AND METHODS
This prospective, noninterventional study was conducted in 
a single academic quaternary care center. Adult patients with 
early (< 24 hr duration), undifferentiated shock, who were 
admitted to a medical or surgical ICU with persistent vaso-
pressor requirements despite preenrollment fluid resuscitation 
of greater than 1 L of IV fluids, were enrolled after informed 
consent. Patients were excluded if they presented with a his-
tory of left or right heart failure, pulmonary hypertension, car-
diac rhythm other than sinus, significant peripheral vascular 
disease, suspected or known increased intracranial pressure, 
recent abdominal surgery, recent history of venous thrombo-
embolism, and body mass index less than 15 or greater than 
40 kg/m2. Enrollment period was from May 2016 to April 2017. 
Approval for this study was granted by the UCLA Institutional 
Review Board (number 15-001768).

Fluid Responsiveness Assessment
Measurements of carotid corrected FT (ccFT) were made at 
an increment of a 10th of a milliseconds and were obtained 
analyzing Doppler images of common carotid artery pulse 
waveforms (LOGIQ e; GE Healthcare, Wauwatosa, WI) by a 
trained physician sonographer (Fig. 1). A linear array probe 
was used to obtain and record Doppler images of the vessel 
in long-axis view. Patients were evaluated using Ultrasound 
and NICOM simultaneously. Measures were obtained at base-
line (prior to PLR, with the patient in a semirecumbent posi-
tion with 45° head of bed elevation for at least 10 min) and 

Figure 1. Carotid Doppler waveform with markings: 1) flow time (FT) and 2) cycle time. Carotid corrected FT is 
calculated as FT + 1.29 × (heart rate–60). AC = angle correction, Rt = right side.
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during the PLR maneuver performed using NICOM manu-
facturer’s protocol (patient in supine position for 3 min with 
legs passively supported by an inflated wedge at 45° elevation; 
Supplemental Fig. 1, Supplemental Digital Content 1, http://
links.lww.com/CCM/D912 and legend, Supplemental Digital 
Content 5, http://links.lww.com/CCM/D916). ccFT measure-
ments were captured after 120 seconds of the PLR maneuver. 
Fluid responsive status was defined as greater than or equal to 
10% increase in SV via NICOM (15). Systolic and cycle times 
were analyzed by the bedside operator’s interpretation of ultra-
sound-captured images, and ccFT values were calculated using 
Wodey’s formula, FT =FT +1.29 HR-60corrected measured ( ), which has  
been shown to better correct for fast heart rates in comparison to  

widely used Bazett’s formula (FT =
FT

RR interval
corrected

measrured ) (16, 17).  

A second, blinded investigator reevaluated unprocessed bed-
side images to avoid treatment bias and assessinter-user  
variability.

Statistical Methods
The NICOM and carotid Doppler measures were compared 
by response status using the two-sample t test. The accuracy 
of ∆ccFT as a predictor of fluid responsive status was assessed 
using receiver operating characteristic (ROC) analysis. The 
best threshold of ∆ccFT to detect fluid responsiveness was cho-
sen to maximize the sensitivity for a target specificity of at least 
96%. The accuracy of ∆ccFT as a predictor of fluid response 
status was evaluated by the following potential covariates: 
mechanical ventilation, passive breathing on mechanical ven-
tilation, and positive end-expiratory pressure (PEEP) greater 
than 5 among the mechanically ventilated subset of subjects. 
The area under the curves (AUCs) were compared by level 
of each specified covariate (18). The agreement between the 
bedside and blinded ccFT measures was evaluated using the 
Bland-Altman plot, a plot of the differences versus the means. 
Accuracy was calculated as an average value of specificity and 
sensitivity of the test. p values of less than 0.05 were consid-
ered statistically significant. Data are presented as mean ± SD 
or median (interquartile range).

RESULTS
Seventy-nine patients were enrolled in the study. Two of the 
enrolled patients (2.5%) developed complications during PLR 
and did not complete the protocol. One of this pair developed 
atrial fibrillation, and the other had a significant decrease in the 
oxygen saturation of hemoglobin as measured by pulse oximetry 
(Supplemental Fig. 2, Supplemental Digital Content 2, http://
links.lww.com/CCM/D913 and legend, Supplemental Digital 
Content 5, http://links.lww.com/CCM/D916). Baseline charac-
teristics of the 77 patients who completed the full PLR protocol 
are displayed in Table 1. These patients were grouped according 
to their SV response to a PLR as measured by NICOM. “Fluid 
responders” included patients that had a SV increase greater 
than or equal to 10% by NICOM after a PLR. “Nonresponders” 
included patients demonstrating a SV increase less than 10% by 

NICOM after a PLR. The majority of the patients (70.1%) were 
designated as fluid responsive based on these criteria.

Fluid responsive patients had a greater increase in ccFT after 
PLR than nonresponsive patients (14.1 ± 19 [SD] vs –4.0 ± 8 ms; 
p < 0.001) (Table 2). The percentage increase from baseline in 
ccFT was also higher among responders than nonresponders 
(+4.8 ± [SD] 6.4 vs –1.4% ± 2.9%; p < 0.001). Dot plot analy-
sis presented in Figure 2 demonstrates the differences in ∆ccFT 
between NICOM-defined fluid responders and nonresponders. 
ROC curve analysis for ∆ccFT ability to predict fluid responsive-
ness is presented in Figure 3, and we show that using a cutoff 
value of 7 ms as a ∆ccFT to define fluid responsiveness had a 
specificity of 96%, sensitivity of 68%, positive predictive value of 
97%, and accuracy of 82%. Additional subgroup analyses found 
that mechanical ventilation, respiratory rate, and PEEP greater 
than 5 cmH

2
O had no significant impact on the test perfor-

mance (Supplemental Table 1, Supplemental Digital Content 
3, http://links.lww.com/CCM/D914). Blinded versus bedside-
obtained results were compared via Bland-Altman plot show-
ing a mean difference score of 0 at baseline (nonsignificant, 95% 
limits of agreement were –6.7 and +6.6) and a mean difference 
score of –0.2 (nonsignificant, 95% limits of agreement were –6.6 
and +6.4) after PLR, showing good agreement between inves-
tigators (Supplemental Fig. 3, Supplemental Digital Content 
4, http://links.lww.com/CCM/D915 and legend, Supplemental 
Digital Content 5, http://links.lww.com/CCM/D916).

TABLE 1. Baseline Clinical Characteristics of 
Study Participants

Patient Characteristics Total, n = 77

Age, mean ± SD, yr 60.6 ± 17

Female, % 51

Body mass index, mean ± SD, kg/m2 24 ± 8

Hematocrit, mean ± SD, % 29.4 ± 7

End-stage renal disease or dialysis, % 42

Total fluids received, mean ± SD, L 8 ± 5

Mechanical ventilation, % 59

 Passive ventilation, perecent of 
ventilated patients

47

Positive end-expiratory pressure  
> 5 mm Hg, %

25

Pressor used, %

 Norepinephrine 71

 Dopamine 5

 Vasopressin 3

 Phenylephrine 6

 Combination 14

Acute Physiology and Chronic Health 
Evaluation II, mean ± SD

24.5 ± 10
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DISCUSSION
The results suggest that ∆ccFT induced by a PLR maneuver can 
determine fluid responsiveness in a selected population of patients 
with early undifferentiated shock. The area under the receiver 
operator curve suggests that ∆ccFT can be used in place of the 
reference method, which was a 10% increase in SV measured by 
NICOM. A cutoff of a 7 ms increase in ∆ccFT gave excellent posi-
tive predictive value and accuracy. Furthermore, the PLR protocol 
was well tolerated and able to be completed in 97.5% of patients.

There is no consensus about the best way to predict fluid 
responsiveness (19). In contrast to other novel hemodynamic 
monitoring systems, point-of-care ultrasound is widely present 

in ICU settings (20), and the number of indications for its use 
continues to grow (21). Ultrasonographic measures such as respi-
ratory change in inferior vena cava diameter (22), respiratory 
change in peak aortic velocity (23), or change in echocardiogra-
phy-measured end-diastolic area of left ventricle (24) have been 
used for hemodynamic evaluation of a patient in shock (25). The 
use of ultrasound to measure Doppler velocity time integral (VTI) 
of large arteries following PLR maneuver can predict fluid respon-
siveness assessment (26–28), although variability in the angle of 
insonation between measurements limits its precision (29).

Despite conflicting data from earlier studies (15, 30, 31), 
there is an increasing body of published evidence showing 
the usefulness of corrected FT evaluation in fluid manage-
ment (32–38). However, there are a number of limitations 
of using the absolute value of corrected FT. First, it is not 
only a simple metric of preload but also depends on heart 
rate, inotropy, and afterload conditions (4, 39, 40). Second, 
its absolute duration does not correlate with the SV (41). 
Instead, the change in duration of ccFT can identify changes 
in left ventricular SV due to altered loading conditions. In 
order to determine if a change in preload leads to a change 
in the duration of FT, the heart’s afterload and contractility 
must be constant and the FT must be corrected for a heart 
rate (17). Accordingly, ∆ccFT decreases with fluid or blood 
removal (36, 42, 43), and increases with fluid administra-
tion in volume-depleted patients (38, 43, 44). A number of 
pilot studies show that ∆ccFT also increases after IV fluid 
bolus challenge (33, 35) or PLR (36, 38) in fluid responsive 
patients. Using ultrasonographic CO monitoring (35), pulse 
contour based analysis (37), or the more widely used, esopha-
geal Doppler-based assessment of SV index to define preload 

TABLE 2. Corrected Carotid Flow Time and Noninvasive Cardiac Output Monitoring 
(Cheetah Medical, Newton Center, MA) Results Pre and Post Passive Leg Raise

Variables
Total,  
n = 77

Responders,  
n = 54 (70.1%)

Nonresponders,  
n = 23 (29.9%) p

Mean arterial pressure, mean ± SD, mm Hg 60 ± 8 61 ± 8 68 ± 7 0.15

Heart rate, mean ± SD, beats/min 103 ± 24 101 ± 25 108 ± 21 0.28

Noninvasive cardiac output monitoring, mean ± SD

 Baseline cardiac index, L/min/m2 3.7 ± 5.1 4.0 ± 6.1 3.1 ± 0.9 0.51

 Post PLR cardiac index, L/min/m2 4.3 ± 3.7 4.8 ± 4.3 3.0 ± 0.8 0.06

 Baseline SV, mL 64.1 ± 24.7 65.0 ± 24.5 62.0 ± 25.6 0.63

 Post PLR SV, mL 77.7 ± 32.2 85.9 ± 31.7 59.1 ± 25 0.01

 Change in SV, mean ± SD, % 24.7 ± 23.6 33.9 ± 22.1 3.1 ± 6.9  

Carotid Doppler

 Baseline ccFT, mean ± SD, ms 301 ± 33 300 ± 32 302 ± 35 0.86

 Post PLR ccFT, mean ± SD, ms 310 ± 37 315 ± 36 298 ± 37 0.067

 ∆ccFT, mean ± SD, %, ms 8.7 ± 18 14.1 ± 19 –4.0 ± 8 < 0.001

 ∆ccFT, mean ± SD, % 3.0 ± 6.3 4.8 ± 6.4 –1.4 ± 2.9 < 0.001

∆ccFT = change in carotid corrected flow time, ccFT = carotid corrected flow time, PLR = passive leg raise, SV = stroke volume.

Figure 2. Dot plot analysis of change in carotid corrected flow time 
(ccFT) by fluid responder status.
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responsiveness (33, 34), fluid responders show significantly 
higher ∆ccFT in comparison to nonresponders. Combining 
Doppler evaluation of ∆ccFT with a well-validated PLR 
maneuver (10–14) offers several advantages in comparison to 
other methods of fluid responsiveness assessment. Measuring 
∆ccFT is less subject to artifact that many other measures of 
SV, it is almost universally applicable and, based on results 
presented here, there is an excellent agreement between bed-
side and blinded investigator measurements.

There are several strengths of this study. This is the larg-
est study to our knowledge evaluating ∆ccFT after PLR as a 
predictor of fluid responsiveness in shock. All patients were on 
fixed vasopressor support during the test, thus minimizing the 
alteration of systemic vascular resistance during the evalua-
tion. The study included patients spontaneously breathing and 
on passive mechanical ventilation. Positive pressure ventilation 

had no significant impact on 
the ability of ∆ccFT to predict 
fluid responsiveness.

Our study has several 
limitations. We did not assess 
fluid responsiveness directly. 
Instead, we compared ∆ccFT 
to a reference method. NICOM 
was used as a reference stan-
dard for fluid responsive-
ness because it has acceptable  
agreement with other CO 
monitoring systems (11, 13, 
19, 45, 46), is easy to apply, 
and has been studied in both 
spontaneously breathing 
and mechanically ventilated 
patients with shock in combi-
nation with PLR (13, 47, 48).

The exclusion of patients 
with congestive heart failure 
reduces the generalizabil-
ity of conclusions, although 
post hoc analysis of echocar-
diographic results obtained 
within the same hospital stay 
indicated that left ventricular 
ejection fraction was reduced 
in at least 13.7% of cases 
(10/73). The same applies for 
excluding conditions which 
can potentially lead to a sub-
optimal or potentially harmful 
PLR—lower extremity throm-
boembolism, recent abdomi-
nal surgery or hip fractures, 
suspected elevated intracra-
nial pressure, or significant 
peripheral vascular disease. 
Broadening the inclusion cri-

teria in the future should help understand better the general 
applicability of this method. Despite good interrater agree-
ment, manual measurement can lead to misinterpretation of 
results, both due to measurement bias, or skill of the operator. 
Additionally, ccFT slightly varies throughout the respiratory 
cycle, and random averaging of the ccFT between the three 
beats (41) may not be able to sufficiently correct potential inac-
curacy in interpretation of ccFT measurements. Automated 
identification of pulse waveform components combined with 
respiratory tracing may improve accuracy of ∆ccFT interpreta-
tion in the future.

More importantly, appreciating complex relationship between 
hemodynamic determinants and understanding the limits of 
currently used dynamic variables which act as surrogates for SV 
change, future critical care research may lean toward utilization of 
composite measures of fluid responsiveness capable of predicting 

Figure 3. A, Receiver operating characteristic curve analysis for change in carotid corrected flow time (∆ccFT) 
ability to predict fluid responsiveness. B, ∆ccFT test characteristics when cutoff values are used to predict fluid 
responsiveness. ccFT = carotid corrected flow time, AUC = area under the curve, NPV = negative predictive 
value, PPV = positive predictive value.
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fluid responsiveness with better accuracy (49). We can specu-
late that one such example could be combining the two carotid 
Doppler-derived variables—change in VTI and ∆ccFT.

CONCLUSIONS
In patients with early, undifferentiated shock, ∆ccFT induced 
by a PLR maneuver was able to predict fluid responsiveness. It 
compares favorably with NICOM, with an AUC of 0.88 sug-
gesting it can be used as an alternative to other methods. Its 
effectiveness is not affected by mechanical ventilation, respi-
ratory rate, or PEEP greater than 5 mmH

2
O. Further studies 

focused on clarification of the role of ∆ccFT in the assessment 
of fluid responsiveness are warranted.
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