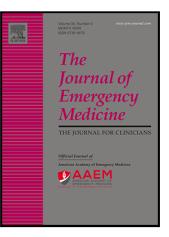
Complications of Ultrasound-Guided Peripheral Nerve Blocks in the Emergency Department: A Systematic Review and Meta-Analysis

Joyce Hanyue Gu, Adrian Cotarelo, Mark Samarneh


 PII:
 S0736-4679(25)00055-1

 DOI:
 https://doi.org/10.1016/j.jemermed.2025.02.025

 Reference:
 JEM 13904

To appear in: Journal of Emergency Medicine

Received date:16 December 2024Revised date:9 February 2025Accepted date:11 February 2025

Please cite this article as: Joyce Hanyue Gu, Adrian Cotarelo, Mark Samarneh, Complications of Ultrasound-Guided Peripheral Nerve Blocks in the Emergency Department: A Systematic Review and Meta-Analysis, *Journal of Emergency Medicine* (2025), doi: https://doi.org/10.1016/j.jemermed.2025.02.025

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

(c) 2025 Published by Elsevier Inc.

Complications of Ultrasound-Guided Peripheral Nerve

Blocks in the Emergency Department: A Systematic

Review and Meta-Analysis

Authors:

- Joyce Hanyue Gu
 - Corresponding author
 - o Email: joycehanyuegu0405@gmail.com
 - Affiliation: Lake Erie College of Osteopathic Medicine, Seton Hill, PA, USA
- Adrian Cotarelo
 - o Affiliation: St. John's Riverside Hospital, Yonkers, NY, USA
- Mark Samarneh
 - o Affiliation: St. John's Riverside Hospital, Yonkers, NY, USA

Keywords: ultrasound-guided peripheral nerve block, complications, emergency

department

CRediT statement

- Joyce Hanyue Gu: Conceptualization, Methodology, Data Curation, Investigation, Formal analysis, Visualization, Writing Original Draft
- Adrian Cotarelo: Conceptualization, Methodology, Data Curation, Investigation, Formal analysis
- Mark Samarneh: Writing Review and Editing, Supervision

Acknowledgements

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Funding

No funding was received to assist with the preparation of this manuscript.

Abstract

Background: Ultrasound-guided nerve block (USGNB) is a technique which employs ultrasound guidance to improve the accuracy of anesthetic delivery in nerve block procedures, which leads to decreased analgesic use, fewer adverse effects, and increased patient satisfaction. While USGNB is traditionally administered by trained anesthesiologists in the perioperative setting, it also offers potential to improve pain management practices in the emergency department (ED).

Objective: Our objective is to assess the safety of USGNB in the ED setting.

Methods: We performed a systematic review and random effects model meta-analysis to estimate the complication rates of USGNB in the ED setting and the odds ratio of complication rates compared to standard of care analgesia. We searched records retrieved from PubMed and Google Scholar. Studies which examined ED-performed USGNB and reported adverse event statistics were included.

Results: Our systematic review screen yielded 179 retrievable studies, of which we included 53. A subset of 22 studies provided calculating odds ratios compared to standard analgesia. USGNB in the ED setting demonstrated a complication rate of 0.05 (95% CI [0.03, 0.07]) and a lower odds ratio 0.17 (95% CI 29 [0.08, 0.37]) of complications compared with standard analgesia.

Conclusion: Current evidence suggests that USGNB in the ED setting confers a low risk of complications and offers safety advantages over standard analgesia.

Introduction

Acute pain control is a primary concern for emergency department (ED) physicians, who encounter patients suffering from a wide range of traumatic injuries including fractures, dislocations, and blast injuries. Traditionally, severe pain in such settings is managed via intravenous administration of analgesics such as morphine [1]. However, such approaches can require large or sustained doses of analgesics to achieve adequate pain control, which can increase the risk of opioid-associated adverse effects, opioid dependency, and decreased patient satisfaction [1].

Ultrasound-guided nerve blocks (USGNB) have emerged as an effective strategy for enhancing pain management and reducing opioid use. As early as 1978, La Grange et al. proposed the use of doppler ultrasound to guide placement of supraclavicular brachial plexus blocks [2]. Similar techniques have since proliferated in anesthesiology practice, effectively decreasing the analgesic dosing, complications, and time to adequate anesthesia [1, 3]. The success of USGNB in anesthesiology has led to expand use in other settings, including the emergency department (ED) [4-5].

Despite potential benefits of USGNB, its adoption in the ED is hindered by its relative complexity. USGNB necessitates specialized training in ultrasound image acquisition and interpretation, as well as practiced motor skills to perform the nerve block [5]. Furthermore, USGNB poses potential risks, including hematomas, arterial puncture, other site complications and local systemic anesthetic toxicity (LAST) [1]. The objective of this study is to conduct a systematic review and meta-analysis of the existing

literature on ED-performed USGNB to summarize the rates of procedural complications, both as a proportion of cases and as odds ratios compared to standard analgesia.

Methods

Study Selection

We performed a literature search on October 6, 2024 using the public research literature databases PubMed and Google Scholar. The search used the search query "ultrasound nerve block emergency" for both databases and restricted PubMed to clinical trials and randomized control trial filters. The Google Scholar search was limited to the first 100 articles returned. Other databases were excluded as a sufficient number of articles were identified using publicly accessible resources, and subscription-based services were not available to us.

We included case series, observational studies and randomized control trials involving USGNB performed in the ED setting that reported adverse event data. We excluded single case reports, studies which did not employ USGNB, studies in which USGNB were not performed by ED physicians or nurses, and studies that did not report complications of USGNB. The full text of all eligible studies was reviewed for inclusion by the first author. For each included study we extracted the digital object identifier

(DOI), authors, publication year, number of USGNB performed, type of USGNB, number of USGNB-associated complications, and the types of complications. A subset of the included publications also compared USGNB to a control of standard of care analgesia. For these publications we also extracted the number of patients received control analgesia, the number of complications associated with the control analgesia and the types of complications reported. All relevant study data was extracted and tabulated using Excel (Microsoft, Redmond, WA) by the first author. Automated data extraction tools were not used in this process.

Although a standardized risk of bias assessment tool for the estimation of complication rates does not exist to the best of our knowledge, we employed a subset of the Cochrane Risk of Bias 2 tool for randomized trials. The Cochrane Risk of Bias 2 tool for randomized trials evaluates the risk of bias of randomized trials based on five domains: (1) bias arising from the randomization process, (2) bias due to deviations from intended interventions, (3) bias due to missing outcome data, (4) bias in measurement of the outcome, and (5) bias in selection of the reported result. Of these, items (2) through (4) applied in our setting. This tool was employed by the first author for the evaluation of risk of bias.

In addition to our primary meta-analysis of complication rates, we also conducted a variety of sensitivity analyses by restricting the analysis to subsets of records. The first analysis restricts the records to only randomized control trials (RCTs), the second

analysis excludes failed nerve blocks as a complication, and the third analysis restricts the records to only those with a low risk of bias. We also conducted a subgroup analysis to estimate the complication rate of the most common nerve block types, including femoral nerve/fascia iliaca compartment blocks, brachial plexus nerve blocks, and forearm nerve blocks.

Statistical Analysis

We carried out the meta-analysis using the R programming language version 4.4.1 (The R Foundation for Statistical Computing), a programming language for statistical computation, and the metafor package, which enables meta-analysis computations. We conducted a meta-analysis of proportions to estimate the complication rate of USGNB, and we conducted a meta-analysis of odds ratios to estimate the odds ratio of the complication rate of USCNB compared to standard analgesia. We used a random effects model, which assumes that the true effect size varies across the different studies considered, and measures both the variability within each study as well as the variability across the different studies. The meta-analysis of complication rates employed a logit transformation to maps proportions to logits, which are better suited for computing confidence intervals as they take values from negative infinity to infinity [7]. When the proportion is 0, as is the case in many of the articles included in our analysis, we used a 0.5 continuity correction [8]. The statistics across studies are combined by using inverse variance weighting. The between-study variance tau^2 parameter is estimated using the

restricted maximum likelihood (REML) method, which is recommended over other methods such as the DerSimonian-Laird method [9].

Results

Our initial PubMed and Google Scholar searches yielded 93 and 100 studies, respectively, for a total of 193 studies screened. Finally, n = 5 other records identified through ad hoc means during early stages of the investigation were included in the study. After removal of duplicates, we identified 180 unique records, of which 179 were successfully retrieved for full review. Of these, 126 were excluded for not being performed in the ED (n = 64), not providing the required data (n = 27), being a review article (n = 21) or case report (n = 12), being an animal study (n = 1), or providing a citation only without a retrievable record (n = 1). for a total of 53 studies included in the analysis (Figure 1). [10-62] The included studies and relevant characteristics are displayed in Table 1.

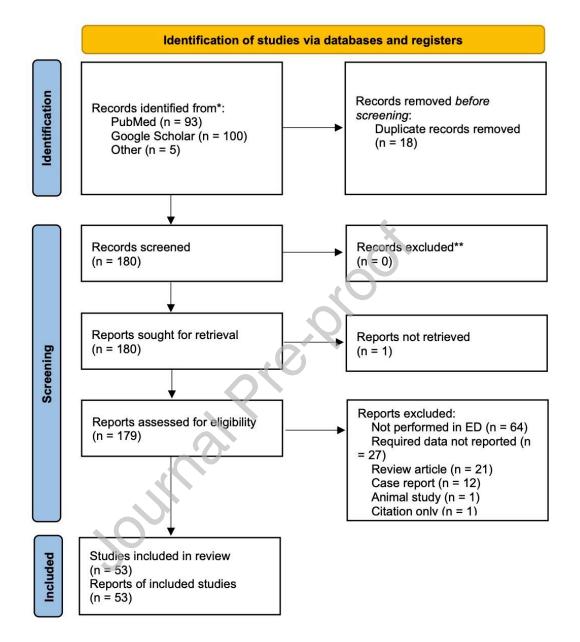


Figure 1: PRISMA flow diagram

Table 1: Studies included in meta-analysis.

Study	Block Type	N	Country	Study Design	Analgesic	Control Pain Manage ment	Compar ison to Standar d Care Analges ia	Risk of Bias	Prospecti ve or Retrospe ctive
Armin et al., (2022)	Erector spinae	27	Iran	RCT	Lidocaine		no	Low bias	Prospecti ve
Armin et al., (2022)	Intercosta I	23	Iran	RCT	Lidocaine		no	Low bias	Prospecti ve
Ashtari et al., (2023)	Periosteal	39	Iran	RCT	Lidocaine	IV Morphin e	yes	Low bias	Prospecti ve
Beaud oin et al., (2009)	Femoral	13	USA	Observati onal	Bupivacain e	30	no	Low bias	Prospecti ve
Beaud oin et al., (2013)	Femoral	18	USA	RCT	Bupivacain e	IV Morphin e	yes	Low bias	Prospecti ve
Bhoi et al., (2012)	Sciatic	4	India	Observati onal	Lidocaine, Bupivacain e		no	Low bias	Prospecti ve
Bhoi et al., (2012)	Femoral	7	India	Observati onal	Lidocaine, Bupivacain e		no	Low bias	Prospecti ve
Bhoi et al., (2012)	Brachial	29	India	Observati onal	Lidocaine		no	Low bias	Prospecti ve
Bhoi et al., (2012)	Forearm	8	India	Observati onal	Lidocaine		no	Low bias	Prospecti ve
Blaiva s et al., (2011)	Brachial	21	USA	RCT	Lidocaine	IV Etomidat e	yes	Low bias	Prospecti ve
Buttne r et al., (2018)	Mixed	18	German y	RCT	Prilocaine, Ropivacain e	IV Midazola m	yes	Low bias	Prospecti ve
Chand ra et al., (2010)	Brachial	6	India	Case Series	Lidocaine		no	Some conce rns	Retrospe ctive
Chand ra et al., (2010)	Sciatic	1	India	Case Series	Lidocaine		no	Some conce rns	Retrospe ctive
Chand ra et al., (2010)	Forearm	1	India	Case Series	Lidocaine		no	Some conce rns	Retrospe ctive
Chen	FICB	38	China	RCT	Ropivacain	IV	no	Low	Prospecti

et al.,					е	Flurbipro		bias	ve
(2021) Coope	Femoral	48	Australi	RCT	Levobupiva	fen	no	Some	Prospecti
r et al.,	remora	40	a	NOT	caine		110	conce	ve
(2018)								rns	
Coope	FICB	52	Australi	RCT	Levobupiva		no	Some	Prospecti
r et al., (2018)			а		caine			conce rns	ve
David	Erector	30	India	RCT	Ropivacain	IV	yes	Low	Prospecti
et al.,	spinae				e	Morphin		bias	ve
(2024)	Deschiel	00	1	DOT	1.1.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	e			Descenti
Doost et al.,	Brachial	30	Iran	RCT	Lidocaine	IV Propofol,	yes	Low bias	Prospecti ve
(2017)						Fentanyl		Dias	ve
Fletch	Femoral	26	UK	RCT	Bupivacain	IV	no	Low	Prospecti
er et					е	Morphin		bias	ve
al., (2003)						е			
Frenke	Forearm	10	Canada	Observati	Lidocaine,		no	Low	Prospecti
l et al.,				onal	Bupivacain			bias	ve
(2015)		45	_	DOT	e				D "
Gerlier et al.,	Femoral	15	France	RCT	Ropivacain e	IV Morphin	yes	Low bias	Prospecti ve
(2023)						e		Dias	ve
Groot	FICB	43	Netherl	Observati	Levobupiva		no	Some	Prospecti
et al.,			ands	onal	caine			conce	ve
(2015)	Femoral	18	Turkov	DCT	Rupiyoogin	IV	1/00	rns Low	Droopooti
Gullupi nar et	remoral	10	Turkey	RCT	Bupivacain e	paraceta	yes	bias	Prospecti ve
al.,					•	mol,		2100	
(2022)						tramadol			
Haines et al.,	FICB	20	USA	Observati onal	Bupivacain e		no	Low bias	Prospecti
(2012)				Ulla	e			Dias	ve
Hao et	FICB	44	China	RCT	Ropivacain	IM	yes	Some	Prospecti
al.,					е	Fentanyl		conce	ve
(2019) Heffler	Femoral/	85	USA	Observati	Popiyagain		20	rns Some	Potrocno
et al.,	FICB	05	USA	onal	Ropivacain e		no	conce	Retrospe ctive
(2022)					-			rns	
Herrin	Abdomin	4	USA	Case	Lidocaine,		no	Low	Retrospe
g et al.,	al			Series	Bupivacain			bias	ctive
ai., (2011)					е				
Ho et	Erector	19	Canada	RCT	Lidocaine,		no	Low	Prospecti
al.,	spinae				Bupivacain			bias	ve
(2024) Isfaha	Forearm	27	Iran	RCT	e Lidocaine,	IV	yes	Some	Prospecti
ni et	i ucaiiii	21	nan		Bupivacain	Ketamin	yes	conce	ve
al.,					e	e		rns	-
(2021)									
Jang et al.,	Femoral	16	Korea	RCT	Bupivacain e	IV Tramado	yes	Low bias	Prospecti
(2018)					C			DIaS	ve
Kang	Mixed	20	Korea	RCT	Lidocaine,	Not	yes	Low	Prospecti

et al., (2017)					Ropivacain	specified		bias	ve
(2017) Ketela ars et al., (2018)	FICB	13	Netherl ands	Observati onal	e Ropivacain e		no	Low bias	Prospecti ve
Ketela ars et al., (2018)	Femoral	51	Netherl ands	Observati onal	Ropivacain e		no	Low bias	Prospecti ve
Lee et al., (2021)	Femoral	10 2	Canada	Observati onal	Bupivacain e		no	Low bias	Prospecti ve
Lee et al., (2014)	Femoral	25	Korea	Case- Control	Bupivacain e	IV Morphin e	yes	Low bias	Retrospe ctive
Liebm ann et al., (2006)	Forearm	11	USA	Observati onal	Lidocaine, Bupivacain e		no	Low bias	Prospecti ve
Martin et al., (2022)	Brachial	2	USA	Case Series	Bupivacain e	2	no	Some conce rns	Retrospe ctive
Martin et al., (2022)	Sciatic	1	USA	Case Series	Bupivacain e		no	Some conce rns	Retrospe ctive
Merz- Herral a et al., (2023)	Femoral/ FICB	11 1	USA	Observati onal	Bupivacain e, Ropivacain e		no	Low bias	Retrospe ctive
Merz- Herral a et al., (2023)	Serratus anterior	69	USA	Observati onal	Bupivacain e, Ropivacain e		no	Low bias	Retrospe ctive
Merz- Herral a et al., (2023)	Erector spinae	45	USA	Observati onal	Bupivacain e, Ropivacain e		no	Low bias	Retrospe ctive
Merz- Herral a et al., (2023)	Sciatic	36	USA	Observati onal	Bupivacain e, Ropivacain e		no	Low bias	Retrospe ctive
Merz- Herral a et al., (2023)	Brachial	61	USA	Observati onal	Bupivacain e, Ropivacain e		no	Low bias	Retrospe ctive
Merz- Herral a et al.,	Popliteal	20	USA	Observati onal	Bupivacain e, Ropivacain e		no	Low bias	Retrospe ctive

Lizoscy Merz- Herral a, (2023)Forearm 4848USA USAObservati onal onal noBupivacain eno noLow biasRetrospe ctiveMerz- (2023)Abdomin al. (2023)1USA USAObservati onalBupivacain eno noLow biasRetrospe ctiveMerz- al. (2023)Abdomin al.1USA USAObservati onalBupivacain eno eLow biasRetrospe ctiveMerz- (2023)Other al. (2023)29USA onalObservati onalBupivacain eno eLow biasRetrospe ctiveMixed al., (2022)Other al., (2023)29USA onalObservati eBupivacain eno eLow biasRetrospe ctiveMohan al., (2023)Sprasca pular al., (2023)10India EcaseRCT SeriesRopivacain eNot geotifiedvesLow biasProspecti veMorin al., (2023)Femoral pular72USA al.RCT SeriesBupivacain eNot geotifiedvesLow biasProspecti veNet et al., (2023)Femoral al.46Iran al.Case SeriesBupivacain eNot geotifiedVes biasLow popProspecti biasNet et al., (2024)Femoral al.46Iran al.RCT al.Bupivacain eno conce msLow popPr	(2023)									
a et (2023)Image: Second second eRepivacain eImage: Second second eRetrospe biasRetrospe ctiveMerz- Herral a et al., (2023)Other 2929USAObservati onal onal onal eBupivacain e, Ropivacain eImage: Not second popImage: Not second <td>Merz-</td> <td>Forearm</td> <td>48</td> <td>USA</td> <td></td> <td>•</td> <td></td> <td>no</td> <td></td> <td></td>	Merz-	Forearm	48	USA		•		no		
al (2023)cII					e la				01010	00
Merzal a et al., (2023)Abdomin al1USAObservati onalBupivacain e, Ropivacain enoLow biasRetrospe ctiveMerz- a et al., (2023)Other et al., (2023)29USAObservati onalBupivacain enoLow biasRetrospe ctiveMerz- a et al., (2023)Other et al., (2023)29USAObservati onalBupivacain enoLow biasRetrospe ctiveMohan al., (2022)Mixed56IndiaRCT eRopivacain eIV ketamin eyesLow biasProspecti veMohan al., (2022)Suprasca pular10IndiaCase SeriesLidocaineNot specifiedyesLow biasProspecti veMorine on et al., (2016)Femoral e72USARCT SeriesBupivacain eNot specifiedyesLow biasProspecti veRames h et al., (2024)Erector spinae23IndiaRCT aBupivacain ePlacebo popyesLow biasProspecti veRuker d et al., (2024)Femoral e34Ausirali aRCT aBupivacain ePlacebo popyesLow biasProspecti veRuker el et al., (2024)Femoral e34Ausirali aRCT aBupivacain ePlacebo popyesLow biasProspecti veRuker el	al.,					-				
Herral a et al., (2023)Other 29USAObservati onal ee, Ropivacain enoLow biasRetrospe ctiveMerz- Herral a et al., (2023)Other29USAObservati onalBupivacain e, Ropivacain enoLow biasRetrospe ctiveMohan (2022)Mixed56IndiaRCTRopivacain eIV weyes ktamin eNot specifiedSome conceProspecti veMohan (2022)Suprasca10IndiaCase SeriesLidocaine eNot specifiedyes yesLow biasProspecti veMorris on et al., (2017)Femoral spinae72USARCT seriesBupivacain eNot specifiedyes yesLow biasProspecti veMorris on et al., (2017)Mixed spinae46Iran aCase seriesBupivacain enoLow popProspecti veReid et al., (2023)Femoral a34Ausirali aRCT aBupivacain ePlacebo popyes yesLow biasProspecti veReid et al., (2024)Femoral a34Ausirali aRCT aBupivacain ePlacebo popyes popLow biasProspecti veRuker et al., (2024)Femoral a34Ausirali aRCT aBupivacain eno popLow popProspecti veR										
a et al., (2023)Cher (2023)29USAObservati onalBupivacain e, Ropivacain e, Ropivacain e, Ropivacain e,noLow biasRetrospe ctiveMotan (2023)Mixed56IndiaRCT RCTRopivacain e, Ropivacain eIV weyesLow biasProspecti veMohan (2022)Suprasca pular al., (2023)10IndiaCase SeriesLidocaine eNot specifiednoSome conce conce rsRetrospe ctiveMorins (2016)Femoral spinae al., (2017)72USARCT seriesBupivacain eNot specifiedyes specifiedLow biasProspecti veRames (2017)Femoral spinae al., (2024)72USARCT seriesBupivacain eNot specifiedyes specifiedLow biasProspecti veRames (2017)Frector spinae al., (2024)23IndiaRCT aBupivacain ePlacebo yesLow biasProspecti veRames (2009)Femoral al., (2024)34Australi aRCT aBupivacain ePlacebo popyes yesLow biasProspecti veRuker (2024)Femoral al., (2024)40Iran aRCT aBupivacain eFasical popyes yesLow biasProspecti veRuker (2024)Femoral al., (2024)21Iran aRCT 	Merz-	Abdomin	1	USA	Observati	Bupivacain		no	Low	Retrospe
al., (2023) Chter Merz- Herral at at et 29 USA Observati onal main onal Bupivacain e, Ropivacain e no Low bias Retrospe ctive (2023) Mixed ty et al., (2022) 56 India RCT Ropivacain e no Low bias Prospecti ve (2022) Mohan pular Mixed pular 56 India RCT Ropivacain e IV yes yes Low bias Prospecti ve Mohan sl., (2022) Suprasca pular 10 India Case Series Lidocaine e no some conce rns Retrospe ctive Morris (2016) Femoral al., (2017) 72 USA RCT Bupivacain e Not specified yes Low bias Prospecti ve Rames c(2017) Erector r 72 USA RCT Bupivacain e Not specified yes Low bias Prospecti ve Rames c(2017) Femoral a 74 Ausirali a RCT Bupivacain e Placebo yes Low bias Prospecti ve <td>Herral</td> <td>al</td> <td></td> <td></td> <td>onal</td> <td>e,</td> <td></td> <td></td> <td>bias</td> <td>ctive</td>	Herral	al			onal	e,			bias	ctive
(2023)Image: Constraint of the constraint						Ropivacain				
Merz- Herral a et al., (2023)Other 2929USA USA onalObservati onal onalBupivacain e, Ropivacain enoLow biasRetrospe ctive(2023)Mohan al., (2022)Mixed ty et al., (2022)56IndiaRCT conce seriesRopivacain eIV ketamin eyes seriesLow ketamin eNot seriesNot ser						е				
Herral a et a et eMixel eSeries et eDias ective ctive et et eMohan a et (2022)Mixed pular at et et et et et et et et et et et et etIV et et et et et et et et etIV et et et et et et et et et etVes et et et et et et et et et et et etIV et et et et et et etVes et et et et et et et et et et etIV et e										
a et al., (2023)Mixed (2022)56IndiaRCTRopivacain eIV (Ketamin eyes (Ketamin eLow biasProspecti veMohan (2022)Suprasca pular al., (2022)10IndiaCase SeriesLidocainenosome conce rmsSome conce criveMorins on et al., (2013)Femoral e72USARCTBupivacain eNot specifiednoLow biasProspecti criveMorris on et al., (2016)Femoral e72USARCTBupivacain eNot specifiedvesLow biasProspecti veMorris (2013)Femoral al., (2014)46Iran aCase SeriesBupivacain ePlacebo popyesLow biasProspecti veKeid et al., (2017)Femoral al., (2014)34Australi aRCT eBupivacain ePlacebo popyesLow biasProspecti veReid et al., (2024)Femoral a34Australi aRCT eBupivacain eFasical popyesLow biasProspecti veRuker al., (2024)Femoral a47Iran RCTRCT eLidocainenoSome conce popProspecti veRuker al., (2024)Femoral a34Turkey RCTRCT eRopivacain enoLow conce popRuker al., (2024)Femoral al		Other	29	USA		Bupivacain		no		
al., (2023)Mixed (2022)56IndiaRCTRopivacain eIV Ketamin eyesLow biasProspecti veMohan (2022)Suprasca pular10IndiaCase SeriesLidocaine enoSome some criveRetrospe ctiveMohan y et al., (2023)Suprasca pular10IndiaCase SeriesLidocaine enoSome specifiedRetrospe ctiveMorris on et al., (2016)Femoral e72USARCTBupivacain eNot eyesLow biasProspecti veNejati et al., (2017)Mixed46IranCase SeriesBupivacain ePlacebo popyesLow biasRetrospe ctiveRames al., (2017)Femoral al., (2013)34Australi aRCTBupivacain ePlacebo popyesLow biasProspecti veReid et al., (2024)Femoral al., (2024)40IranRCTBupivacain ePasical popyesLow biasProspecti veRuker d et al., (2024)FiCB47IranRCTLidocaine enoSome conce rmsProspecti veRuker d et al., (2024)Femoral al.21Norway RCTRCTLidocaine enoSome conce rmsRuker d et al., (2024)Femoral al.21Norway RCTRCTRopivacain e <t< td=""><td></td><td></td><td></td><td></td><td>onal</td><td></td><td></td><td></td><td>bias</td><td>ctive</td></t<>					onal				bias	ctive
(2023)Image: constraint of the second se						-				
Mohan ty et al., (2022)Mixed56IndiaRCT RCTRopivacain eIV Ketamin eyes ketamin eLow biasProspecti veMohan (2022)Suprasca pular al., (2023)10IndiaCase SeriesLidocainenoSome conce rnsRetrospe ctiveMorris on et al., (2016)Femoral (2016)72USARCT SeriesBupivacain eNot specifiedyesLow biasProspecti veNejati et al., (2017)Mixed spinae al., (2023)46Iran Case SeriesCase Bupivacain eBupivacain eNot specifiedyesLow biasRetrospe ctiveRames et al., (2017)Erector spinae al., (2024)23IndiaRCT eBupivacain ePlacebo popyesLow biasProspecti veRames et al., (2024)Femoral al., (2024)34Australi aRCT eBupivacain eFasical popyesLow biasProspecti veRuker d et al., (2024)FICB47IranRCT eLidocainenoSome conce popProspecti veRuker d et al., (2024)Femoral al.21Norway RCTRCT LidocainenoSome conce rnsProspecti veRuker d et al., (2024)Femoral al.34Turkey RCTRCT LidocainenoSome conce rnsProspecti 						е				
ty et al., (2022)Number suprasca pular al., (2023)Number suprasca pular al., (2023)Number suprasca pular al., (2023)Number suprasca pular al., (2023)Number suprasca pular al., (2023)Number suprasca pular al., (2016)Number suprasca pular al., (2016)Number suprasca pular al., (2016)Number suprasca pular al., (2016)Number suprasca pular al., (2016)Number suprasca pular al., (2017)Number suprasca al., (2017)Number suprasca al., (2017)Number suprasca al., (2017)Number suprasca al., (2017)Number suprasca al., al., (2017)Number suprasca al., (2017)Number suprasca al., al., al., al., (2023)Number suprasca al., al., al., al., (2024)Number suprasca al., al., al., al., (2024)Number suprasca al., al., al., al., al., (2024)Number suprasca al., al., al., al., al., al., (2024)Number suprasca al., al., al., al., al., al., al., (2024)Number suprasca al., al		Mixed	FG	India	DOT	Donivoqoin	N/	1/00	Low	Draanaati
al., (2022)Some pularIndiaCase SeriesLidocaine seriesnoSome conce rnsRetrospe ctive(2023)Morris on et al., (2016)Femoral series72USARCTBupivacain eNot specifiedyesLow biasProspecti veNejati et al., (2017)Mixed spinae46IranCase SeriesBupivacain eNot specifiedyesLow biasProspecti veRames al., (2017)Erector spinae23India aRCTBupivacain ePlacebo popyesLow biasProspecti veRames al., (2023)Femoral a34Australi aRCTBupivacain ePlacebo popyesLow biasProspecti veRuker (2009)Femoral a40Iran aRCTBupivacain eFasical popyesLow biasProspecti veRuker (2024)Femoral a40Iran aRCTLidocaine enoSome conce rnsProspecti veRuker (2024)Femoral a41Iran aRCTLidocaine enoSome conce rnsProspecti veRuker (2024)Femoral a21Norway aRCTRopivacain enoSome conce rnsProspecti veRuker (2024)Femoral a34Turkey aRCTRopivacain enoNoLow bias<		wixed	90	India	RUI	-		yes		
(2022)Image: constraint of the series of the se						e			Dias	ve
Mohan ty et al., (2023)Suprasca pular10IndiaCase SeriesLidocaine SeriesnoSome conce rmsRetrospe ctiveMorris on et al., (2016)Femoral al., (2016)72USARCTBupivacain eNot specifiedyesLow biasProspecti veNejati et al., (2017)Mixed et al., (2017)46IranCase SeriesBupivacain enoLow biasRetrospe ctiveRemes al., (2017)Erector spinae23IndiaRCTBupivacain ePlaceboyesLow biasProspecti veRemes al., (2023)Femoral al., (2024)34Australi aRCTBupivacain eFasical popyesLow biasProspecti veRuker al., (2024)Femoral a40IranRCTLidocaine enoSome conce rmsProspecti veRuker al., (2024)FICB47IranRCTLidocaine enoSome conce rmsProspecti veRuker al., (2024)Femoral al., (2024)21Norway RCTRCTRopivacain enoLow biasProspecti veRuker al., (2024)Femoral al., al., (2024)21Norway RCTRCTRopivacain enoLow prospecti veRuker al., (2024)Femoral al., al., (2021)34Turkey RCTRCTRopiv							e			
ty et al., (2023)pular al., (2023)pular pularImage: seriesSeriesSeriesconce pularconce rnsconce rnsconce rnsconce rnsconce rnsconce rnsconce rnsconce rnsconce rnsconce rnsconce pularconce rnsconce rn	<u> </u>	Suprasca	10	India	Case	Lidocaine		no	Some	Retrospe
al., (2023)rmsrmsMorris on et al., (2016)Femoral on et al., (2016)72USARCTBupivacain eNot specifiedyesLow biasProspecti veMixed et al., (2017)Mixed et al., (2017)46IranCase SeriesBupivacain enoLow biasRetrospe ctiveRames al., (2023)Erector spinae23IndiaRCTBupivacain ePlaceboyesLow biasProspecti veReid et al., (2023)Femoral al., (2024)34Australi aRCTBupivacain eFasical popyesLow biasProspecti veRuker d et al., (2024)Femoral a40IranRCTLidocainenoSome conce rmsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rmsProspecti veRuker d et al., (2024)Femoral al., (2024)21NorwayRCTLidocainenoSome conce rmsProspecti veSaga m et al., (2024)Femoral al., al.,34TurkeyRCTRopivacain enoLow biasProspecti veSaga m et al., (2021)Femoral al., al.,34TurkeyRCTRopivacain enoSome conce rmsSagao m et al., (2021)Femoral al.,34Turkey </td <td></td> <td></td> <td>10</td> <td>Inula</td> <td></td> <td>LIUUCairie</td> <td></td> <td>110</td> <td></td> <td></td>			10	Inula		LIUUCairie		110		
(2023)Image: constraint of the system of the sy		pulai			Genes					Clive
Morris on et al., (2016)Femoral on et al., (2017)72USARCTBupivacain eNot specifiedyesLow biasProspecti veNejati et al., (2017)Mixed46IranCase SeriesBupivacain enoLow biasRetrospe ctiveRames al., (2017)Erector spinae23IndiaRCTBupivacain ePlaceboyesLow biasProspecti veRames al., (2023)Femoral al., (2024)34Australi aRCTBupivacain eFasical popyesLow biasProspecti veRuker d et al., (2024)Femoral al., (2024)40IranRCTLidocaine enoSome conce rnsProspecti veRuker (2024)FICB47IranRCTLidocaine enoSome conce rnsProspecti veSaga m et al., (2024)Femoral al., (2024)34TurkeyRCTRopivacain enoLow biasProspecti veSaga m et al., (2024)Femoral al., al., (2024)34TurkeyRCTLidocaine enoSome conce rnsProspecti veSaga m et al., (2021)Femoral34TurkeyRCTBupivacain enoSome conce rnsProspecti veSaga m et al., (2021)Femoral30IndiaRCTBupivacain eIVyes <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td>1113</td> <td></td>							·		1113	
on et al., (2016)Mixed (2016)46IranCase SeriesBupivacain enoLow biasRetrospe ctiveRemes al., (2023)Erector spinae23IndiaRCTBupivacain ePlaceboyesLow biasProspecti veReidet al., (2023)Femoral al., (2009)34Australi aRCTBupivacain eFasical popyesLow biasProspecti veRuker d et al., (2024)Femoral al.40IranRCTLidocaine enoSome coneProspecti veRuker d et al., (2024)Femoral al.40IranRCTLidocaine enoSome cone rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocaine enoSome cone rnsProspecti veRuker d et al., (2024)Femoral al., e21NorwayRCTRopivacain enoLow biasProspecti veSaga m et al., (2024)Femoral al., al., (2024)34Turkey rkeyRCTLidocaine enoSome cone rnsProspecti veSagai m et al., (2021)Femoral al.34Turkey rkeyRCTLidocaine cone enoSome cone rnsProspecti veSagai m et al., (2021)Femoral al.30IndiaRCTBupivacain rIVyes <td> ,</td> <td>Femoral</td> <td>72</td> <td>USA</td> <td>RCT</td> <td>Bupiyacain</td> <td>Not</td> <td>ves</td> <td>Low</td> <td>Prospecti</td>	,	Femoral	72	USA	RCT	Bupiyacain	Not	ves	Low	Prospecti
al., (2016) Mixed 46 Iran Case Series Bupivacain e no Low bias Retrospe ctive Rames (2017) Erector spinae 23 India RCT Bupivacain e Placebo yes Low bias Prospecti ve Rames al., (2023) Femoral 34 Australi a RCT Bupivacain e Placebo yes Low bias Prospecti ve Reid et al., (2023) Femoral al., a 34 Australi a RCT Bupivacain e Fasical pop yes Low bias Prospecti ve Ruker of et al., (2024) Femoral al., a 40 Iran RCT Lidocaine no Some conce rns Prospecti ve Ruker of et al., (2024) FICB 47 Iran RCT Lidocaine no Some conce rns Prospecti ve Saga (2024) Femoral al., a 21 Norway RCT Ropivacain e no Some conce rns Prospecti ve Saga (2024) Femoral al., a 34 Turkey RCT Ropivacain e no Some conce rns ve Saga (2024) Femoral al.		remora	12	00/1	i to i			yee		-
(2016)Mixed46IranCase SeriesBupivacain enoLow biasRetrospe ctive(2017)RamesErector spinae23IndiaRCTBupivacain ePlaceboyesLow biasProspecti veNet al., (2023)Femoral a34Australi aRCTBupivacain eFasical popyesLow biasProspecti veReid et al., (2009)Femoral a34Australi aRCTBupivacain eFasical popyesLow biasProspecti veRuker d et al., (2024)Femoral a40IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veSaga et al., (2024)Femoral a21NorwayRCTRopivacain enoLow popProspecti veSagaa et al., (2024)Femoral a34TurkeyRCTRopivacain enoSome popProspecti veSagaa a l., (2024)Femoral a34TurkeyRCTLidocainenoSome popProspecti veSagaa a l., (2021)Femoral a34TurkeyRCTLidocainenoSome popProspecti veSagaa a l., (2021)Femoral a30IndiaRCTBupivacain p						Ŭ	opeenieu		biao	
Nejati et al., (2017)Mixed46Iran IranCase SeriesBupivacain eInoLow biasRetrospe ctiveRames al., (2023)Erector spinae23IndiaRCTBupivacain ePlaceboyesLow biasProspecti veReid et al., (2009)Femoral34Australi aRCTBupivacain eFasical popyesLow biasProspecti veRuker d et al., (2009)Femoral40IranRCTLidocainenoSome conce rmsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rmsProspecti veRuker d et al., (2024)Femoral a21NorwayRCTRopivacain enoSome conce rmsProspecti veSaga et al., (2024)Femoral a34TurkeyRCTLidocainenoNoSome conce rmsProspecti veSaga et al., (2021)Femoral34TurkeyRCTLidocainenoSome conce rmsProspecti veSagaa et al., (2021)Femoral34TurkeyRCTLidocainenoSome conce rmsProspecti veSagaa et al., (2021)Femoral34TurkeyRCTLidocainenoNoSome conce rmsProspecti veSagaa et al., (2021)Femoral34 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
et al., (2017)Erector spinae23IndiaRCTBupivacain ePlaceboyesLow biasProspecti veReid et al., (2023)Femoral al., (2009)34Australi aRCTBupivacain eFasical popyesLow biasProspecti veReid et al., (2009)Femoral a34Australi aRCTBupivacain eFasical popyesLow biasProspecti veRuker d et al., (2024)Femoral a40IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FlCB47IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)Femoral a21Norway runRCTRopivacain enoLow biasProspecti veSaga a et al., (2024)Femoral a34Turkey runRCTRopivacain enoSome runProspecti veSagla al., (2021)Femoral a34Turkey runRCTLidocainenoSome runProspecti veSahoo bFemoral30IndiaRCTBupivacain runIVyesLowProspecti		Mixed	46	Iran	Case	Bupivacain		no	Low	Retrospe
Rames h et al., (2023)Erector spinae23IndiaRCTBupivacain ePlaceboyesLow biasProspecti veReid et al., (2029)Femoral a34Australi aRCTBupivacain eFasical popyesLow biasProspecti veRuker d et al., (2024)Femoral a40IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veSaga et al., (2024)Femoral a21NorwayRCTRopivacain enoLow biasProspecti veSaga a et al., (2021)Femoral a34TurkeyRCTLidocainenoLow conce rnsProspecti veSahoo babooFemoral30IndiaRCTBupivacain aIVyesLowProspecti ve									bias	
h et al., (2023)spinae aaAustrali aRCTBupivacain eFasical popyes popLow biasProspecti veReid et al., (2009)Femoral a34Australi aRCTBupivacain eFasical popyes popLow biasProspecti veRuker d et al., (2024)Femoral a40IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veSaga et al., (2024)Femoral a21NorwayRCTRopivacain enoLow popProspecti veSagla m et al., (2021)Femoral34TurkeyRCTLidocainenoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacain IVIVyesLowProspecti	(2017)									
al., (2023)''''''''Reid et al., (2009)Femoral a34Australi aRCTBupivacain eFasical popyesLow biasProspecti veRuker d et al., (2024)Femoral a40IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veSaga et al., (2024)Femoral a21NorwayRCTRopivacain enoLow biasProspecti veSagla al., (2021)Femoral a34TurkeyRCTLidocainenoSome conce rnsProspecti veSagla al., (2021)Femoral34TurkeyRCTLidocainenoSome conce rnsProspecti veSagla al., (2021)Femoral34TurkeyRCTLidocainenoSome conce rnsProspecti veSahoo babFemoral30IndiaRCTBupivacainIVyesLowProspecti	Rames	Erector	23	India	RCT	Bupivacain	Placebo	yes	Low	Prospecti
(2023)Image: second	h et	spinae				е			bias	ve
Reid et al., (2009)Femoral34Australi aRCTBupivacain eFasical popyesLow biasProspecti veRuker d et al., (2024)Femoral40IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veSaga t al., (2024)Femoral21NorwayRCTRopivacain enoLow biasProspecti veSaga al., (2024)Femoral34TurkeyRCTLidocainenoSome conce rnsProspecti veSagla al., (2021)Femoral34TurkeyRCTLidocainenoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacainIVyesLowProspecti										
al., (2009)aaepopbiasveRuker d et al., (2024)Femoral40IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veSaga et al., (2024)Femoral al.21NorwayRCTRopivacain enoLow biasProspecti veSaga m et al., (2021)Femoral al.34TurkeyRCTLidocainenoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacain allIVyesLowProspecti	,									
(2009)Ruker d et al., (2024)Femoral40IranRCTLidocainenoSome conce rnsProspecti ve rnsRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti ve rnsRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti ve rnsSaga et al., (2024)Femoral al.21Norway rukeyRCTRopivacain enoLow biasProspecti ve veSagla m et al., (2021)Femoral al.34Turkey rukeyRCTLidocainenoSome conce rnsProspecti veSagla n et al., (2021)Femoral al.34Turkey rukeyRCTLidocainenoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacainIVyesLowProspecti		Femoral	34		RCT	Bupivacain		yes		Prospecti
Ruker d et al., (2024)Femoral40IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veSaga et al., (2024)Femoral al.21Norway rukeyRCTRopivacain enoLow biasProspecti veSagla m et al., (2021)Femoral al.34Turkey rukeyRCTLidocainenoSome conce rnsProspecti veSagla n et al., (2021)Femoral al.30IndiaRCTBupivacain BupivacainIVyesLowProspecti				а		е	рор		bias	ve
d et al., (2024)PicePiceconce rnsveRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veSaga et al., (2024)Femoral al., (2024)21NorwayRCTRopivacain enoLow biasProspecti veSaga et al., (2024)Femoral al., (2024)21NorwayRCTRopivacain enoLow biasProspecti veSagla m et al., (2021)Femoral al.34TurkeyRCTLidocainenoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacainIVyesLowProspecti	`` '									
al., (2024)rnsrnsRuker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti ve rnsSaga et al., (2024)Femoral al.21Norway ruleRCTRopivacain enoLow biasProspecti ve rnsSaga et al., (2024)Femoral al.21Norway ruleRCTRopivacain enoLow biasProspecti ve veSaga m et al., (2021)Femoral al.34Turkey ruleRCTLidocaine conce rulenoSome conce ruleProspecti ve veSahooFemoral al30IndiaRCTBupivacain ruleIVyesLowProspecti		Femoral	40	Iran	RCT	Lidocaine		no		
(2024)Image: space scale scal										ve
Ruker d et al., (2024)FICB47IranRCTLidocainenoSome conce rnsProspecti veSaga et al., (2024)Femoral 2121NorwayRCTRopivacain enoLow biasProspecti veSaga et al., (2024)Femoral al., (2024)21NorwayRCTRopivacain enoLow biasProspecti veSagla m et al., (2021)Femoral al.34TurkeyRCTLidocainenoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacainIVyesLowProspecti									rns	
d et al., (2024)andandandconce rnsveSaga et al., (2024)Femoral 2121Norway NorwayRCTRopivacain enoLow biasProspecti veSaga t al., (2024)Femoral and34Turkey TurkeyRCTLidocainenoSome conce rnsProspecti veSagla n et al., (2021)Femoral and34Turkey TurkeyRCTLidocainenoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacainIVyesLowProspecti		FICP	17	Iron	DCT	Lidoocino		20	Some	Droopcoti
al., (2024)al.al.rnsrnsSaga et al., (2024)Femoral 2121Norway NorwayRCTRopivacain enoLow biasProspecti veSagla m et al., (2021)Femoral 2434Turkey NumberRCTLidocaine NumbernoSome conce rnsProspecti veSagla (2021)Femoral 2034Turkey NumberRCTLidocaine NumbernoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacainIVyesLowProspecti		FIUD	4/	iiaii	RUI	Liuocaine		10		-
(2024)Image: second										ve
Saga et al., (2024)Femoral21NorwayRCTRopivacain enoLow biasProspecti veSagla m et al., (2021)Femoral34TurkeyRCTLidocainenoSome conce rnsProspecti veSagla (2021)Femoral34TurkeyRCTLidocainenoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacainIVyesLowProspecti									1115	
et al., (2024)ebiasveSagla m et al., (2021)Femoral al.34Turkey TurkeyRCTLidocainenoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacainIVyesLowProspecti		Femoral	21	Norway	RCT	Ronivacain	L	no	Low	Prospecti
(2024)Image: Constraint of the second state of the second sta		· cmora	- '	. to way		•				
Sagla m et al., (2021)Femoral34TurkeyRCTLidocainenoSome conce rnsProspecti veSahooFemoral30IndiaRCTBupivacainIVyesLowProspecti						-			2.20	
m et al., (2021) Sahoo Femoral 30 India RCT Bupivacain IV yes Low Prospecti	,	Femoral	34	Turkev	RCT	Lidocaine		no	Some	Prospecti
al., (2021) rns 2000 rns 20000										-
(2021) Image: Constraint of the second sec										-
Sahoo Femoral 30 India RCT Bupivacain IV yes Low Prospecti										
		Femoral	30	India	RCT	Bupivacain		yes	Low	Prospecti
	et al.,					•	Nalbuphi	-	bias	-

(2024)						ne			
Sohoni et al., (2016)	Forearm	18	USA	Observati onal	Lidocaine		no	Low bias	Prospecti ve
Stone et al., (2008)	Brachial	7	USA	RCT	Lidocaine	IV Propofol, Etomidat e	yes	Low bias	Prospecti ve
Stone et al., (2007)	Brachial	5	USA	Case Series	Lidocaine		no	Some conce rns	Retrospe ctive
Tekin et al., (2021)	Brachial	30	Turkey	RCT	Lidocaine	IV Propofol, Fentanyl	yes	Low bias	Prospecti ve
Tezel et al., (2014)	Suprasca pular	21	Turkey	RCT	Prilocaine	IV Ketamin e	yes	Low bias	Prospecti ve
Topal et al., (2020)	Femoral	40	Turkey	Observati onal	Prilocaine		no	Low bias	Prospecti ve
Tsai et al., (2022)	Femoral	66	Taiwan	Observati onal	Lidocaine		no	Low bias	Retrospe ctive
Turner et al., (2014)	Femoral	31	USA	Observati onal	Ropivacain e		no	Low bias	Retrospe ctive
Unluer et al., (2016)	Forearm	15	Turkey	Observati onal	Lidocaine		no	Some conce rns	Prospecti ve
Vrablik et al., (2021)	Forearm	6	USA	RCT	Lidocaine, Bupivacain e	Not specified	yes	Low bias	Prospecti ve
Wroe et al., (2021)	Forearm	4	USA	Observati onal	Not specified		no	Some conce rns	Prospecti ve
Xu et al., (2021)	Abdomin al	60	USA	RCT	Ropivacain e		no	Some conce rns	Prospecti ve

Primary Meta-analysis: USGNB Complication Rate

The main meta-analysis to determine the pooled proportion of USGNB-associated complications encompassed a total of 2106 patients treated with ED-performed USGNB with 79 complications across the 53 included studies.

Reported complications included nausea/vomiting/dizziness, failed nerve block, respiratory depression (including hypoxia and desaturation), hypotension, bleeding (including hematoma, bruising, and arterial puncture), urinary retention, paresthesias, LAST, nerve injury, fall, agitation, pruritis, constipation, and seizure. The adverse effects of nausea, vomiting and dizziness were grouped together in multiple studies, so this grouping was maintained for the purpose of the analysis. The total complication counts and the corresponding number of studies reporting these complications are displayed in Figure 2.

The meta-analysis of overall complication rate is presented in Figure 3. The aggregate complication rate in patients undergoing USGNB was 0.05 (95% CI [0.03, 0.07]). Heterogeneity between studies was moderate ($I^2 = 65.66\%$, p < 0.0001) [63].

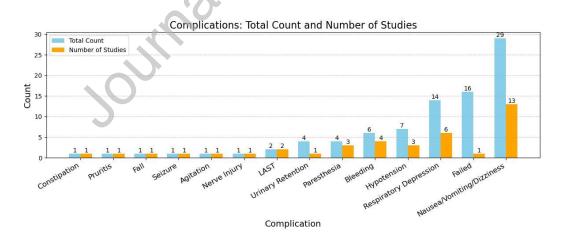


Figure 2: The total number of patients and the number of studies reporting complications of USGNB. RCT = randomized control trial

Journal Pre-proof

Study I	Events	Total	Weights	P	roportion [95% Cl
Fletcher et al. (2003)	0	26	1.5 %	▶ ——-	0.02 [0.00, 0.24
Liebmann et al. (2006)	0	11	1.4 %	} ∙−−−−−	0.04 [0.00, 0.42
Stone et al. (2007)	0	5	1.4 %	}	0.08 [0.01, 0.62
Stone et al. (2008)	0	7	1.4 %	·	0.06 [0.00, 0.54
Beaudoin et al. (2009)	0	13	1.5 %	▶ ■■	0.04 [0.00, 0.38
Reid et al. (2009)	0	34	1.5 %	▶ — -	0.01 [0.00, 0.19
Chandra et al. (2010)	2	8	2.4 %	· · · · · · · · · · · · · · · · · · ·	0.25 [0.06, 0.62
Blaivas et al. (2011)	0	21	1.5 %	j=	0.02 [0.00, 0.28
Herring et al. (2011)	0	4	1.4 %	i	0.10 [0.01, 0.67
Bhoi et al. (2012)	0	48	1.5 %	È-i	0.01 [0.00, 0.14
Haines et al. (2012)	0	20	1.5 %	 	0.02 [0.00, 0.29
Beaudoin et al. (2013)	9	18	3.1 %	⊢ ∎−-1	0.50 [0.28, 0.72
Lee et al. (2014)	1	25	2.1 %		0.04 [0.01, 0.24
Tezel et al. (2014)	0	21	1.5 %		0.02 [0.00, 0.28
Turner et al. (2014)	3	31	2.8 %		0.10 [0.03, 0.26
Frenkel et al. (2015)	0	10	1.4 %		0.05 [0.00, 0.45
Groot et al. (2015)	0	43	1.5 %		0.01 [0.00, 0.16
Morrison et al. (2016)	2	72	2.6 %	; .)∎-1	0.03 [0.01, 0.10
Sohoni et al. (2016)	0	18	1.5 %		0.03 [0.00, 0.31
Unluer et al. (2016)	0	15	1.5 %	, 	0.03 [0.00, 0.35
Doost et al. (2017)	1	30	2.1 %		0.03 [0.00, 0.20
Kang et al. (2017)	0	20	1.5 %		0.02 [0.00, 0.29
Nejati et al. (2017)	2	46	2.6 %		0.04 [0.01, 0.16
Buttner et al. (2018)	0	18	1.5 %		0.03 [0.00, 0.31
Cooper et al. (2018)	18	100	3.4 %		0.18 [0.12, 0.27
Jang et al. (2018)	9	16	3.4 %		0.56 [0.32, 0.78
Ketelaars et al. (2018)	0	64	1.5 %		0.01 [0.00, 0.11
Hao et al. (2019)	3	44	2.8 %		0.07 [0.02, 0.19
Topal et al. (2020)	0	44	1.5 %		0.01 [0.00, 0.17
Chen et al. (2021)	3	38	2.8 %		0.08 [0.03, 0.22
Isfahani et al. (2021)	0	27			0.02 [0.00, 0.23
Lee et al. (2021)	-		1.5 %		0.02 [0.00, 0.23
Saglam et al. (2021)	0	102	1.5 %		0.01 [0.00, 0.19
Tekin et al. (2021)	0	34	1.5 %		0.17 [0.07, 0.34
Vrablik et al. (2021)	5	30	3.0 %		0.17 [0.02, 0.63
	1	6	1.9 %		
Wroe et al. (2021)	0	4	1.4 %	} →	0.10 [0.01, 0.67
Xu et al. (2021)	4	60	3.0 %		0.07 [0.03, 0.16
Armin et al. (2022)	1	50	2.1 %	▶ <u> </u>	0.02 [0.00, 0.13
Gullupinar et al. (2022)	0	18	1.5 %	} 	0.03 [0.00, 0.31
Heffler et al. (2022)	0	85	1.5 %	H .	0.01 [0.00, 0.09
Martin et al. (2022)	0	3	1.4 %	J	0.12 [0.01, 0.73
Mohanty et al. (2022)	0	56	1.5 %		0.01 [0.00, 0.13
Tsai et al. (2022)	0	66	1.5 %	H	0.01 [0.00, 0.11
Ashtari et al. (2023)	0	39	1.5 %	▶ - 1	0.01 [0.00, 0.17
Gerlier et al. (2023)	8	15	3.0 %		0.53 [0.29, 0.76
Merz-Herrala et al. (2023)		420	2.1 %	#	0.00 [0.00, 0.02
Mohanty et al. (2023)	0	10	1.4 %	⊦ ∎	0.05 [0.00, 0.45
Ramesh et al. (2023)	3	23	2.8 %		0.13 [0.04, 0.34
David et al. (2024)	0	35	1.5 %		0.01 [0.00, 0.19
Ho et al. (2024)	0	19	1.5 %		0.03 [0.00, 0.30
Rukerd et al. (2024)	3	87	2.9 %		0.03 [0.01, 0.10
Saga et al. (2024)	0	21	1.5 %	j=	0.02 [0.00, 0.28
Sahoo et al. (2024)	0	30	1.5 %	▶ ——-	0.02 [0.00, 0.21
		2106			0.05 [0.03, 0.07

0 0.2 0.4 0.6 0.8

Proportion

Figure 3: Meta-analysis of the proportion of complications.

Sensitivity analysis

Sensitivity analysis produced similar results to the main analysis (Figures 4-6). Restricting studies to RCTs only yielded an aggregate complication rate of 0.06 (95% CI 183 [0.04, 0.11]). Exclusion of failed nerve blocks as a complication yielded a complication rate of 0.05 (95% CI [0.03, 0.07]). Including only studies with a low risk of bias demonstrated an aggregate complication rate of 0.04 (95% CI [0.03, 0.08]).

Journal Prem

Study	Events	Total	Weights	Proportion [95% CI]
Fletcher et al. (2003)	0	26	2.4 %	0.02 [0.00, 0.24]
Stone et al. (2008)	0	7	2.4 %	0.06 [0.00, 0.54]
Reid et al. (2009)	0	34	2.4 %	0.01 [0.00, 0.19]
Blaivas et al. (2011)	0	21	2.4 %	0.02 [0.00, 0.28]
Beaudoin et al. (2013)	9	18	4.9 %	⊢ ■ 0.50 [0.28, 0.72]
Tezel et al. (2014)	0	21	2.4 %	0.02 [0.00, 0.28]
Morrison et al. (2016)	2	72	4.2 %	■→ 0.03 [0.01, 0.10]
Doost et al. (2017)	1	30	3.3 %	0.03 [0.00, 0.20]
Kang et al. (2017)	0	20	2.4 %	0.02 [0.00, 0.29]
Buttner et al. (2018)	0	18	2.4 %	0.03 [0.00, 0.31]
Cooper et al. (2018)	18	100	5.3 %	⊢∎→ 0.18 [0.12, 0.27]
Jang et al. (2018)	9	16	4.8 %	⊢ 0.56 [0.32, 0.78]
Hao et al. (2019)	3	44	4.5 %	
Chen et al. (2021)	3	38	4.5 %	0.08 [0.03, 0.22]
Isfahani et al. (2021)	0	27	2.4 %	0.02 [0.00, 0.23]
Saglam et al. (2021)	0	34	2.4 %	0.01 [0.00, 0.19]
Tekin et al. (2021)	5	30	4.8 %	⊢
Vrablik et al. (2021)	1	6	3.1 %	0.17 [0.02, 0.63]
Xu et al. (2021)	4	60	4.8 %	0.07 [0.03, 0.16]
Armin et al. (2022)	1	50	3.4 %	► 0.02 [0.00, 0.13]
Gullupinar et al. (2022)	0	18	2.4 %	0.03 [0.00, 0.31]
Mohanty et al. (2022)	0	56	2.4 %	0.01 [0.00, 0.13]
Ashtari et al. (2023)	0	39	2.4 %	0.01 [0.00, 0.17]
Gerlier et al. (2023)	8	15	4.8 %	⊢ ■ 0.53 [0.29, 0.76]
Ramesh et al. (2023)	3	23	4.5 %	⊢∎──── 0.13 [0.04, 0.34]
David et al. (2024)	0	30	2.4 %	0.02 [0.00, 0.21]
Ho et al. (2024)	0	19	2.4 %	0.03 [0.00, 0.30]
Rukerd et al. (2024)	3	87	4.6 %	■ 0.03 [0.01, 0.10]
Saga et al. (2024)	0	21	2.4 %	0.02 [0.00, 0.28]
Sahoo et al. (2024)	0	30	2.4 %	0.02 [0.00, 0.21]
Random effects model Heterogeneity: 1 ² = 73.889	70 %, Tau² = ⁻	1010 1.5585,	100% p <1e-04	• 0.06 [0.04, 0.11]
				0 0.2 0.4 0.6 0.8
				Proportion

Figure 4: Meta-analysis of the proportion of complications, including only randomized control trials.

Study I	Events	Total	Weights		Proportion [95% C
Fletcher et al. (2003)	0	26	1.5 %	i =	0.02 [0.00, 0.24
Liebmann et al. (2006)	0	11	1.5 %	⊧	0.04 [0.00, 0.42
Stone et al. (2007)	0	5	1.4 %		0.08 [0.01, 0.62
Stone et al. (2008)	0	7	1.4 %	i	0.06 [0.00, 0.54
Beaudoin et al. (2009)	0	13	1.5 %	, }∎	0.04 [0.00, 0.38
Reid et al. (2009)	õ	34	1.5 %	, . =	0.01 [0.00, 0.19
Chandra et al. (2010)	2	8	2.4 %		0.25 [0.06, 0.62
Blaivas et al. (2011)	0	21	1.5 %		0.02 [0.00, 0.28
Herring et al. (2011)	0	4	1.4 %	P=	0.10 [0.01, 0.67
Bhoi et al. (2012)				,	0.01 [0.00, 0.14
	0	48	1.5 %	<u></u> , ⊢	
Haines et al. (2012)	0	20	1.5 %	· · · ·	0.02 [0.00, 0.29
Beaudoin et al. (2013)	9	18	3.1 %		0.50 [0.28, 0.72
Lee et al. (2014)	1	25	2.1 %	}∎	0.04 [0.01, 0.24
Tezel et al. (2014)	0	21	1.5 %	<u> </u> ∙−−−−	0.02 [0.00, 0.28
Turner et al. (2014)	3	31	2.9 %	[⊢∎]	0.10 [0.03, 0.26
Frenkel et al. (2015)	0	10	1.4 %	}	0.05 [0.00, 0.45
Groot et al. (2015)	0	43	1.5 %	▶ →	0.01 [0.00, 0.16
Morrison et al. (2016)	2	72	2.6 %	₩-1	0.03 [0.01, 0.10
Sohoni et al. (2016)	0	18	1.5 %	j	0.03 [0.00, 0.31
Unluer et al. (2016)	0	15	1.5 %		0.03 [0.00, 0.35
Doost et al. (2017)	1	30	2.1 %]∎——	0.03 [0.00, 0.20
Kang et al. (2017)	0	20	1.5 %		0.02 [0.00, 0.29
Nejati et al. (2017)	2	46	2.6 %		0.04 [0.01, 0.16
Buttner et al. (2018)				4	0.03 [0.00, 0.31
	0	18	1.5 %		
Cooper et al. (2018)	2	100	2.6 %		0.02 [0.01, 0.08
Jang et al. (2018)	9	16	3.1 %		0.56 [0.32, 0.78
Ketelaars et al. (2018)	0	64	1.5 %		0.01 [0.00, 0.11
Hao et al. (2019)	3	44	2.9 %		0.07 [0.02, 0.19
Topal et al. (2020)	0	40	1.5 %		0.01 [0.00, 0.17
Chen et al. (2021)	3	38	2.9 %	3H 	0.08 [0.03, 0.22
Isfahani et al. (2021)	0	27	1.5 %	-	0.02 [0.00, 0.23
Lee et al. (2021)	0	102	1.5 %	H	0.00 [0.00, 0.07
Saglam et al. (2021)	0	34	1.5 %	i	0.01 [0.00, 0.19
Tekin et al. (2021)	5	30	3.1 %	·	0.17 [0.07, 0.34
Vrablik et al. (2021)	1	6	1.9 %	I	0.17 [0.02, 0.63
Wroe et al. (2021)	0	4	1.4 %	j	0.10 [0.01, 0.67
Xu et al. (2021)	4	60	3.0 %		0.07 [0.03, 0.16
Armin et al. (2022)	1	50	2.1 %	.,	0.02 [0.00, 0.13
Gullupinar et al. (2022)	0	18	1.5 %	F 1	0.03 [0.00, 0.31
Heffler et al. (2022)					0.01 [0.00, 0.09
	0	85	1.5 %	HH .	
Martin et al. (2022)	0	3	1.4 %		0.12 [0.01, 0.73
Mohanty et al. (2022)	0	56	1.5 %	▶ - 1	0.01 [0.00, 0.13
Tsai et al. (2022)	0	66	1.5 %	► I	0.01 [0.00, 0.11
Ashtari et al. (2023)	0	39	1.5 %	▶ <u> </u>	0.01 [0.00, 0.17
Gerlier et al. (2023)	8	15	3.0 %	· · · · · · · · · · · · · · · · · · ·	0.53 [0.29, 0.76
Merz-Herrala et al. (2023)) 1	420	2.1 %	÷	0.00 [0.00, 0.02
Mohanty et al. (2023)	0	10	1.4 %	<u>}</u> •───┤	0.05 [0.00, 0.45
Ramesh et al. (2023)	3	23	2.8 %	·	0.13 [0.04, 0.34
David et al. (2024)	0	30	1.5 %	▶ —	0.02 [0.00, 0.21
Ho et al. (2024)	0	19	1.5 %		0.03 [0.00, 0.30
Rukerd et al. (2024)	3	87	2.9 %	,- ,]∎-	0.03 [0.01, 0.10
Saga et al. (2024)	0	21	1.5 %		0.02 [0.00, 0.28
Sahoo et al. (2024)	0	30			0.02 [0.00, 0.2]
ounou et al. (2024)	0	30	1.5 %		0.02 [0.00, 0.2
andom effects model	63	2101	100%	•	0.05 [0.03, 0.07

0 0.2 0.4 0.6 0.8

Proportion

Study	Events	Total	Weights		Proportion [95% CI]
Fletcher et al. (2003)	0	26	2.1 %	i=1	0.02 [0.00, 0.24]
Liebmann et al. (2006)	0	11	2.1 %		0.04 [0.00, 0.42]
Stone et al. (2008)	0	7	2.0 %	} • • • • • • • • • • • • • • • • • • •	0.06 [0.00, 0.54]
Beaudoin et al. (2009)	0	13	2.1 %	j	0.04 [0.00, 0.38]
Reid et al. (2009)	0	34	2.1 %	i⊨——	0.01 [0.00, 0.19]
Blaivas et al. (2011)	0	21	2.1 %	ji	0.02 [0.00, 0.28]
Herring et al. (2011)	0	4	2.0 %	j	H 0.10 [0.01, 0.67]
Bhoi et al. (2012)	0	48	2.1 %	i⊨i	0.01 [0.00, 0.14]
Haines et al. (2012)	0	20	2.1 %		0.02 [0.00, 0.29]
Beaudoin et al. (2013)	9	18	4.0 %	· · · · · · · · · · · · · · · · · · ·	- 0.50 0.28, 0.72
Lee et al. (2014)	1	25	2.8 %		0.04 [0.01, 0.24]
Tezel et al. (2014)	0	21	2.1 %	i=	0.02 [0.00, 0.28]
Turner et al. (2014)	3	31	3.7 %		0.10 [0.03, 0.26]
Frenkel et al. (2015)	õ	10	2.1 %	j	0.05 [0.00, 0.45]
Morrison et al. (2016)	2	72	3.5 %		0.03 [0.01, 0.10]
Sohoni et al. (2016)	ō	18	2.1 %	i	0.03 [0.00, 0.31]
Doost et al. (2017)	1	30	2.8 %		0.03 [0.00, 0.20]
Kang et al. (2017)	0	20	2.1 %		0.02 [0.00, 0.29]
Nejati et al. (2017)	2	46	3.5 %		0.04 [0.01, 0.16]
Buttner et al. (2018)	0	18	2.1 %		0.03 [0.00, 0.31]
Jang et al. (2018)	9	16	3.9 %		0.56 [0.32, 0.78]
Ketelaars et al. (2018)	0	64	2.1 %		0.01 [0.00, 0.11]
Topal et al. (2020)	0	40			0.01 [0.00, 0.17]
Chen et al. (2021)			2.1 %	•	0.08 [0.03, 0.22]
Lee et al. (2021)	3	38	3.7 %	[H■ −−−1	0.00 [0.00, 0.22]
	0	102	2.1 %		0.17 [0.07, 0.34]
Tekin et al. (2021)	5	30	4.0 %		
Vrablik et al. (2021)	1	6	2.7 %		0.17 [0.02, 0.63]
Armin et al. (2022)	1	50	2.9 %		0.02 [0.00, 0.13]
Gullupinar et al. (2022)	0	18	2.1 %	• • •••	0.03 [0.00, 0.31]
Mohanty et al. (2022)	0	56	2.1 %	⊨ 1	0.01 [0.00, 0.13]
Tsai et al. (2022)	0	66	2.1 %	⊨ ⊣	0.01 [0.00, 0.11]
Ashtari et al. (2023)	0	39	2.1 %	▶ <u> </u>	0.01 [0.00, 0.17]
Gerlier et al. (2023)	8	15	3.9 %	÷ ⊢∎	
Merz-Herrala et al. (2023		420	2.9 %		0.00 [0.00, 0.02]
Ramesh et al. (2023)	3	23	3.7 %	÷⊢∎	0.13 [0.04, 0.34]
David et al. (2024)	0	30	2.1 %	⊨	0.02 [0.00, 0.21]
Ho et al. (2024)	0	19	2.1 %	Ì = ───1	0.03 [0.00, 0.30]
Saga et al. (2024)	0	21	2.1 %	⊧ i	0.02 [0.00, 0.28]
Sahoo et al. (2024)	0	30	2.1 %	⊨	0.02 [0.00, 0.21]
Random effects model leterogeneity: l ² = 66.39%,	49 Tau² =	1576 1.7523,	100% p <1e-04	♦ 	0.04 [0.03, 0.08]
				0 0.2 0.4 0.6	0.8
				Proportion	

Figure 5: Meta-analysis of the proportion of complications, excluding failed blocks.

Figure 6: Meta-analysis of the proportion of complications, including only studies with low risk of bias.

Subgroup Meta-analysis: Type of Nerve Block

OUT

Subgroup analysis of the three most common types of nerve blocks yielded results similar to those of the main analysis. The largest subgroup, femoral nerve/fascia iliaca compartment blocks, encompassed 26 studies with 1160 patients. Repeat analysis of femoral nerve/fascia iliaca compartment blocks demonstrated an aggregate complication rate of 0.05 (95% CI [0.02, 0.09]) (Figure 7). The second largest subgroup, brachial plexus nerve blocks, was examined in 9 studies involving 191 patients and yielded an aggregate complication rate of 0.07 (95% CI [0.03, 0.15]) (Figure 8). Forearm nerve blocks (radial, median and ulnar nerves) constituted the third largest subgroup, reported in 10 studies with 148 patients and yielding an aggregate complication rate of 0.05 (95% CI [0.02, 221 0.11]) (Figure 9).

Study	Events	Total	Weights	Proportion [95% CI]
Fletcher et al. (2003)	0	26	3.1 %	• 0.02 [0.00, 0.24]
Beaudoin et al. (2009)	0	13	3.1 %	0.04 [0.00, 0.38]
Reid et al. (2009)	0	34	3.1 %	0.01 [0.00, 0.19]
Bhoi et al. (2012)	0	7	3.0 %	0.06 [0.00, 0.54]
Haines et al. (2012)	0	20	3.1 %	0.02 [0.00, 0.29]
Beaudoin et al. (2013)	9	18	5.4 %	0.50 [0.28, 0.72]
Lee et al. (2014)	1	25	4.0 %	0.04 [0.01, 0.24]
Turner et al. (2014)	3	31	5.1 %	0.10 [0.03, 0.26]
Groot et al. (2015)	0	43	3.1 %	0.01 [0.00, 0.16]
Morrison et al. (2016)	2	72	4.8 %	● 0.03 [0.01, 0.10]
Cooper et al. (2018)	18	100	5.7 %	⊢∎→ 0.18 [0.12, 0.27]
Jang et al. (2018)	9	16	5.3 %	→ 0.56 [0.32, 0.78]
Ketelaars et al. (2018)	0	64	3.1 %	0.01 [0.00, 0.11]
Hao et al. (2019)	3	44	5.1 %	0.07 [0.02, 0.19]
Topal et al. (2020)	0	40	3.1 %	0.01 [0.00, 0.17]
Chen et al. (2021)	3	38	5.1 %	0.08 [0.03, 0.22]
Lee et al. (2021)	0	102	3.1 %	0.00 [0.00, 0.07]
Saglam et al. (2021)	0	34	3.1 %	0.01 [0.00, 0.19]
Gullupinar et al. (2022)	0	18	3.1 %	0.03 [0.00, 0.31]
Heffler et al. (2022)	0	85	3.1 %	0.01 [0.00, 0.09]
Tsai et al. (2022)	0	66	3.1 %	0.01 [0.00, 0.11]
Gerlier et al. (2023)	8	15	5.3 %	→ 0.53 [0.29, 0.76]
Merz-Herrala et al. (2023) 0	111	3.1 %	→ 0.00 [0.00, 0.07]
Rukerd et al. (2024)	3	87	5.1 %	■→ 0.03 [0.01, 0.10]
Saga et al. (2024)	0	21	3.1 %	0.02 [0.00, 0.28]
Sahoo et al. (2024)	0	30	3.1 %	• 0.02 [0.00, 0.21]
Random effects model Heterogeneity: I ² = 79.14%	59 Tau² = 2	1160 2.2277, 1	100% p <1e-04	• 0.05 [0.02, 0.09]
, out				0 0.2 0.4 0.6 0.8 Proportion

Figure 7: Meta-analysis of the proportion of complications, restricted to femoral

nerve/fascia iliaca compartment blocks.

Study	Events	Total	Weights	Proportion [95% CI]
Stone et al. (2007)	0	5	7.5 %	0.08 [0.01, 0.62]
Stone et al. (2008)	0	7	7.6 %	0.06 [0.00, 0.54]
Chandra et al. (2010)	1	6	12.0 %	0.17 [0.02, 0.63]
Blaivas et al. (2011)	0	21	7.9 %	0.02 [0.00, 0.28]
Bhoi et al. (2012)	0	29	7.9 %	0.02 [0.00, 0.22]
Doost et al. (2017)	1	30	13.3 %	0.03 [0.00, 0.20]
Tekin et al. (2021)	5	30	29.0 %	0.17 [0.07, 0.34]
Martin et al. (2022)	0	2	6.9 %	• 0.17 [0.01, 0.81]
Merz-Herrala et al. (2023	3) 0	61	8.0 %	0.01 [0.00, 0.12]
Random effects model	7	191	100%	0.07 [0.03, 0.15]
Heterogeneity: l ² = 25.97%	, Tau² = (0.4334,	p = 0.304	
				0 0.2 0.4 0.6 0.8 1
				Proportion

Figure 8: Meta-analysis of the proportion of complications, restricted to brachial plexus cks.

nerve blocks.

Study	Events	Total	Weights		Proportion [95% CI]
Liebmann et al. (2006)	0	11	8.7 %	j 	0.04 [0.00, 0.42]
Chandra et al. (2010)	1	1	6.8 %	÷	- 0.75 [0.11, 0.99]
Bhoi et al. (2012)	0	8	8.5 %	·•	0.06 [0.00, 0.50]
Frenkel et al. (2015)	0	10	8.6 %		0.05 [0.00, 0.45]
Sohoni et al. (2016)	0	18	8.8 %		0.03 [0.00, 0.31]
Unluer et al. (2016)	0	15	8.8 %		0.03 [0.00, 0.35]
Isfahani et al. (2021)	0	27	8.9 %		0.02 [0.00, 0.23]
Vrablik et al. (2021)	1	6	15.1 %		0.17 [0.02, 0.63]
Wroe et al. (2021)	0	4	8.1 %	·	0.10 [0.01, 0.67]
Merz-Herrala et al. (2023	3) 1	48	17.7 %	- <u>v</u>	0.02 [0.00, 0.13]
Random effects model	3	148	100%	0	0.06 [0.03, 0.12]
Heterogeneity: $I^2 = 0.00\%$,	$1au^2 = 0.$	0000, p	= 0.398		
				0 0.2 0.4 0.6	0.8 1
				Proportion	

Figure 9: Meta-analysis of the proportion of complications, restricted to forearm nerve blocks.

Secondary Meta-analysis: USGNB Compared to Standard Analgesia

Of the 53 studies included in the meta-analysis, 22 studies compared USGNB complication rates to those of standard analgesia [13, 15, 17, 229 21, 23, 27, 30-31, 33, 35, 37, 40, 43-44, 48, 51, 53-54, 57-59, 62]. The standard analgesia control groups entailed administration of intravenous medications, including nalbuphine [62], morphine [53-54, 58], and ketamine [51]. Using this subset of studies, secondary meta-analysis

demonstrated a lower rate of complications for USGNB compared to standard analgesia with an aggregate log OR of -1.73 (95% CI [-2.48, -0.99]) and corresponding OR of 0.18 (95% CI [0.08, 0.37]) (Figure 10). Most studies observed an equal or lower rate of complications for USGNB compared to the standard of care, the exceptions being Vrablik et al. (Log OR = 1.27, 95% CI [-2.13, 4.66]), Gullupinar et al. (Log OR = 0.15, 95% CI [-3.82, 4.12]) and Ramesh et al. (Log OR = 2.08, 95% CI [-0.94, 5.10]). [44, 48, 57].

	USG	NR	Cont	rol		
Study			Events		Weights	Log[OR] [95% (
Stone et al. (2008)	0	7	0	5	2.6 %	-0.31 [-4.38, 3.7
Reid et al. (2009)	0	34	0	33	2.7 %	-0.03 [-3.98, 3.9
Blaivas et al. (2011)	0	21	4	21	4.1 %	-2.40 [-5.39, 0.5
Beaudoin et al. (2013)	9	18	17	18	5.8 %	
Tezel et al. (2014)	0	21	8	20	4.2 %	-3.38 [-6.31, -0.4
Morrison et al. (2016)	2	72	10	81	7.9 %	-1.60 [-3.15, -0.0
Doost et al. (2017)	1	30	1	30	4.4 %	_ . 0.00 [−2.82, 2.8
Kang et al. (2017)	0	20		20	3.6 %	-1.15 [-4.41, 2.1
Buttner et al. (2018)	0	18	0	18	2.7 %	— <u> </u>
Jang et al. (2018)	9	16	13	16	7.8 %	-1.22 [-2.81, 0.3
Hao et al. (2019)	3	44	9	42	8.5 %	-1.32 [-2.70, 0.0
Isfahani et al. (2021)	0	27	10	27	4.3 %	-3.50 [-6.40, -0.6
Tekin et al. (2021)	5	30	24	30	8.8 %	-3.00 [-4.31, -1.6
Vrablik et al. (2021)	1	6	0	6	3.4 %	1.27 [-2.13, 4.6
Gullupinar et al. (2022) 0	18	0	21	2.7 %	0.15 [-3.82, 4.1
Mohanty et al. (2022)	0	56	55	55	2.8 % —	-9.44 [-13.37, -5.5
Ashtari et al. (2023)	0	39	4	36	4.1 %	-2.39 [-5.35, 0.5
Gerlier et al. (2023)	8	15	14	15	5.7 %	
Ramesh et al. (2023)	3	23	0	23	4.0 %	 2.08 [-0.94, 5.1
David et al. (2024)	0	35	0	35	2.7 %	——————————————————————————————————————
Ho et al. (2024)	0	19	0	11	2.7 %	-0.53 [-4.52, 3.4
Sahoo et al. (2024)	0	30	10	30	4.3 %	-3.44 [-6.33, -0.5
andom effects mode eterogeneity: l ² = 42.6		599 ² = 1.1	180 822, p =	593 0.009 [.]	100% 17	◆ -1.73 [-2.48, -0.9

–15 –5 5

٦

ς.

Log Odds Ratio

Figure 10: Meta-analysis of the odds ratio of the complication rates in USGNB versus standard care analgesia.

Discussion

The use of USGNB in the ED setting has the potential to substantially improve pain management and reduce the need for opioid analgesics. Aggregate data from 53 studies suggest a low overall rate of USGNB complications at approximately 5%. This complication rate did not change substantially when compared across different types of the most commonly studied blocks. In comparison to standard analgesia, USGNB was associated with a significantly lower risk of complications with an aggregate OR 0.17 (95% CI [0.08, 0.37]).

There have been several other systematic reviews of USGNB use in other settings. Exsteen et al. examined USGNB use by anesthesiologists in the preoperative setting and found USGNB to be associated with less pain, less analgesic use, and fewer adverse events. [66] A systematic review and meta-analysis of USGNB for shoulder dislocations in the ED demonstrated higher patient satisfaction and greater likelihood of successful reduction. [67] Our results build upon these prior publications by providing additional evidence as to the general safety of USGNB in the ED and use over a wide scope of applications.

There is good evidence for the safety of USGNB observed both in our study and others, but there remaining questions to be explored regarding how to best implement and utilize USGNB in the ED. The optimal approach to training ED physicians in USGNB is not well established. Initial work on this was conducted by Bretholz et al. and Pek et al. However, these studies only assessed trainee satisfaction, rather than clinical outcomes. [64-65] Future studies should focus on clinical outcomes of USGNB performed by ED physicians and trainees, as well as assessing the effectiveness of associated USGNB training.

Limitations

The current work has several limitations, which must be considered when interpreting the results. The studies included in the meta-analysis exhibited significant heterogeneity. Our aggregated results were pooled across studies with different nerve block types/indications, analgesics used, physician experience level, patient characteristics, and numerous other factors for which we were unable to control. There was also a wide range of different complication rates reported across the included studies, ranging from 0% up to 50%.

Additionally, our meta-analysis extracted data on complication rates of USGNB from studies in which adverse events were often not the primary outcome of interest. This could have led to under-recognition or under-reporting of such complications. Our investigation only included studies on USGNB which reported complication rates of the procedure. This may introduce bias towards USGNB procedures for which the operator has a particular awareness of or interest in complications of the procedure. Our initial literature search was not optimized in terms of rigor, was limited in terms of databases used and applied a cap on the number of returns considered. There may be additional relevant studies that were not identified, nor included in our analysis. Most of the included USGNB studies were small and might have employed a limited number of operators with particular interest or specialized training in the specific USGNB being examined. This could limit the generalizability of our findings for other ED physicians.

Conclusion

This systematic review and meta-analysis suggest that ultrasound-guided nerve blocks (USGNB) in the emergency department are associated with a low complication rate and a significantly lower risk of complications compared to standard analgesia. These findings support the broader implementation of USGNB in emergency care settings.

Article Summary

- Why is this topic important? Ultrasound-guided peripheral nerve blocks (USGNB) are an emerging technology which has the potential to drastically improve patient outcomes during pain management in the ED.
- 2. What does this review attempt to show? This review attempts to show that USGNB is a safe technique for application in the ED.
- What are the key findings? We find that complications of USGNB occur at a rate of roughly 5% and has an odds ratio of 0.17 compared to standard care analgesia.
- 4. How is patient care impacted? Our study enables greater transparency to patients and ED physicians on the complication rates of USGNB.

References

- Brown J, Goldsmith A, LaPietra A, et al.. Ultrasound-guided Nerve Blocks: Suggested Procedural Guidelines For Emergency Physicians. POCUS Journal. 2022;7:253-261. https://doi.org/10.24908/pocus.v7i2.15233.
- La Grange PdP, Foster P, Pretorius L. Application of the Doppler ultrasound bloodflow detector in supraclavicular brachial plexus block. British journal of anaesthesia. 1978;50:965--967.
- Gao Y, Tan H, Sun R, et al.. Fascia Iliaca Compartment Block Reduces Pain And Opioid Consumption After Total Hip Arthroplasty: A Systematic Review And Metaanalysis. International Journal of Surgery. 2019;65:70-79. https://doi.org/10.1016/j.ijsu.2019.03.014.
- Amini R, Kartchner JZ, Nagdev A, et al.. Ultrasound guided Nerve Blocks In Emergency Medicine Practice. Journal of Ultrasound in Medicine. 2016;35:731-736. https://doi.org/10.7863/ultra.15.05095.
- Walsh CD, Ma IWY, Eyre AJ, et al.. Implementing Ultrasound guided Nerve Blocks In The Emergency Department: A Low - cost, Low - fidelity Training Approach. AEM Education and Training. 2023;7. https://doi.org/10.1002/aet2.10912.
- Moher D, Liberati A, Tetzlaff J, et al.. Preferred Reporting Items For Systematic Reviews And Meta-analyses: The Prisma Statement. PLoS Medicine. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097.
- 7. Bland M. An introduction to medical statistics. . 2015.

- Bradburn MJ, Deeks JJ, Berlin JA, et al.. Much Ado About Nothing: A Comparison Of The Performance Of Meta - analytical Methods With Rare Events. Statistics in Medicine. 2006;26:53-77. https://doi.org/10.1002/sim.2528.
- Tanriver-Ayder E, Faes C, van de Casteele T, et al.. Comparison Of Commonly Used Methods In Random Effects Meta-analysis: Application To Preclinical Data In Drug Discovery Research. BMJ Open Science. 2021;5. https://doi.org/10.1136/bmjos-2020-100074.
- 10. Fletcher AK, Rigby AS, Heyes FL. Three-in-one femoral nerve block as analgesia for fractured neck of femur in the emergency department: A randomized, controlled trial. Annals of Emergency Medicine. 2003;41:227-233. https://doi.org/10.1067/mem.2003.51.
- 11. Liebmann O, Price D, Mills C, et al.. Feasibility of Forearm Ultrasonography-Guided Nerve Blocks of the Radial, Ulnar, and Median Nerves for Hand Procedures in the Emergency Department. Annals of Emergency Medicine. 2006;48:558-562. https://doi.org/10.1016/j.annemergmed.2006.04.014.
- 12. Stone MB, Price DD, Wang R. Ultrasound-guided Supraclavicular Block For The Treatment Of Upper Extremity Fractures, Dislocations, And Abscesses In The ED. The American Journal of Emergency Medicine. 2007;25:472-475. https://doi.org/10.1016/j.ajem.2006.08.019.
- 13. Stone MB, Wang R, Price DD. Ultrasound-guided supraclavicular brachial plexus nerve block vs procedural sedation for the treatment of upper extremity emergencies. The American Journal of Emergency Medicine. 2008;26:706-710. https://doi.org/10.1016/j.ajem.2007.09.011.

- 14. Beaudoin FL, Nagdev A, Merchant RC, et al.. Ultrasound-guided femoral nerve blocks in elderly patients with hip fractures. The American Journal of Emergency Medicine. 2009;28:76-81. https://doi.org/10.1016/j.ajem.2008.09.015.
- Reid N, Stella J, Ryan M, et al.. Use of ultrasound to facilitate accurate femoral nerve block in the emergency department. Emergency Medicine Australasia.
 2009;21:124-130. https://doi.org/10.1111/j.1742-6723.2009.01163.x.
- 16. Chandra A, Bhoi S, Galwankar S. Ultrasound-guided Nerve Blocks In The Emergency Department. Journal of Emergencies, Trauma, and Shock. 2010;3:82. https://doi.org/10.4103/0974-2700.58655.
- 17. Blaivas M, Adhikari S, Lander L. A Prospective Comparison of Procedural Sedation and Ultrasound - guided Interscalene Nerve Block for Shoulder Reduction in the Emergency Department. Academic Emergency Medicine.
 2011;18:922-927. https://doi.org/10.1111/j.1553-2712.2011.01140.x.
- Herring AA, Stone MB, Nagdev AD. Ultrasound-guided abdominal wall nerve blocks in the ED. The American Journal of Emergency Medicine. 2011;30:759-764. https://doi.org/10.1016/j.ajem.2011.03.008.
- 19. Bhoi S, Sinha T, Rodha M, et al.. Feasibility and safety of ultrasound-guided nerve block for management of limb injuries by emergency care physicians. Journal of Emergencies, Trauma, and Shock. 2012;5:28. https://doi.org/10.4103/0974-2700.93107.
- 20. Haines L, Dickman E, Ayvazyan S, et al.. Ultrasound-Guided Fascia Iliaca Compartment Block for Hip Fractures in the Emergency Department. The Journal

of Emergency Medicine. 2012;43:692-697.

https://doi.org/10.1016/j.jemermed.2012.01.050.

- 21. Beaudoin FL, Haran JP, Liebmann O. A Comparison of Ultrasound guided Three - in - one Femoral Nerve Block Versus Parenteral Opioids Alone for Analgesia in Emergency Department Patients With Hip Fractures: A Randomized Controlled Trial. Academic Emergency Medicine. 2013;20:584-591. https://doi.org/10.1111/acem.12154.
- 22. Lee HK, Kang BS, Kim CS, et al.. Ultrasound-guided Regional Anesthesia For The Pain Management Of Elderly Patients With Hip Fractures In The Emergency Department. Clinical and Experimental Emergency Medicine. 2014;1:49-55. https://doi.org/10.15441/ceem.14.008.
- 23. Tezel O, Kaldirim U, Bilgic S, et al. A Comparison Of Suprascapular Nerve Block And Procedural Sedation Analgesia In Shoulder Dislocation Reduction. The American Journal of Emergency Medicine. 2014;32:549-552. https://doi.org/10.1016/j.ajem.2014.02.014.
- 24. Turner AL, Stevenson MD, Cross KP. Impact of Ultrasound-Guided Femoral Nerve Blocks in the Pediatric Emergency Department. Pediatric Emergency Care. 2014;30:227-229. https://doi.org/10.1097/pec.000000000000101.
- 25. Frenkel O, Liebmann O, Fischer JW. Ultrasound-Guided Forearm Nerve Blocks in Kids. Pediatric Emergency Care. 2015;31:255-259. https://doi.org/10.1097/pec.00000000000398.
- 26. Groot L, Dijksman L, Simons M, et al.. Single Fascia Iliaca Compartment Block is Safe and Effective for Emergency Pain Relief in Hip-fracture Patients. Western

Journal of Emergency Medicine. 2015;16:1188-1193.

https://doi.org/10.5811/westjem.2015.10.28270.

- 27. Morrison RS, Dickman E, Hwang U, et al.. Regional Nerve Blocks Improve Pain and Functional Outcomes in Hip Fracture: A Randomized Controlled Trial. Journal of the American Geriatrics Society. 2016;64:2433-2439. https://doi.org/10.1111/jgs.14386.
- 28. Sohoni A, Nagdev A, Takhar S, et al.. Forearm ultrasound-guided nerve blocks vs landmark-based wrist blocks for hand anesthesia in healthy volunteers. The American Journal of Emergency Medicine. 2016;34:730-734. https://doi.org/10.1016/j.ajem.2016.01.020.
- 29. Unluer EE, Karagöz A, Unluer S, et al.. Ultrasound-guided Supracondylar Radial Nerve Block For Colles Fractures In The Ed. The American Journal of Emergency Medicine. 2016;34:1718-1720.

https://doi.org/10.1016/j.ajem.2016.06.007.

- 30. Raeyat Doost E, Heiran MM, Movahedi M, et al.. Ultrasound-guided interscalene nerve block vs procedural sedation by propofol and fentanyl for anterior shoulder dislocations. The American Journal of Emergency Medicine. 2017;35:1435-1439. https://doi.org/10.1016/j.ajem.2017.04.032.
- 31. Kang C, Kim S, Heo Y, et al.. Comparison Of Time To Operation And Efficacies Of Ultrasound-guided Nerve Block And General Anesthesia In Emergency External Fixation Of Lower Leg Fractures (ao 42, 43, 44). The Journal of Foot and Ankle Surgery. 2017;56:1019-1024. https://doi.org/10.1053/j.jfas.2017.04.027.

- Nejati A, Teymourian H, Behrooz L, et al.. Pain management via ultrasoundguided nerve block in emergency department; a case series study. Emergency. 2017;5.
- Buttner B, Mansur A, Kalmbach M, et al.. Prehospital Ultrasound-guided Nerve Blocks Improve Reduction-feasibility Of Dislocated Extremity Injuries Compared To Systemic Analgesia. A Randomized Controlled Trial. PLOS ONE. 2018;13:e0199776. https://doi.org/10.1371/journal.pone.0199776.
- 34. Cooper AL, Nagree Y, Goudie A, et al.. Ultrasound guided Femoral Nerve Blocks Are Not Superior To Ultrasound - guided Fascia Iliaca Blocks For Fractured Neck Of Femur. Emergency Medicine Australasia. 2018;31:393-398. https://doi.org/10.1111/1742-6723.13172.
- 35. Jang JS, Lee Y, Kandahar HK, et al.. Alteracoes No Nivel De Tnf \$α\$ Apos Bloqueio Do Nervo Femoral Guiado Por Ultrassom Em Idosos Com Fratura De Quadril. Brazilian Journal of Anesthesiology. 2018;68:558-563. https://doi.org/10.1016/j.bjan.2018.03.004.
- 36. Ketelaars R, Stollman JT, van Eeten E, et al.. Emergency physician-performed ultrasound-guided nerve blocks in proximal femoral fractures provide safe and effective pain relief: a prospective observational study in The Netherlands. International Journal of Emergency Medicine. 2018;11. https://doi.org/10.1186/s12245-018-0173-z.
- 37. Hao J, Dong B, Zhang J, et al.. Pre-emptive analgesia with continuous fascia iliaca compartment block reduces postoperative delirium in elderly patients with

hip fracture. Saudi Medical Journal. 2019;40:901-906.

https://doi.org/10.15537/smj.2019.9.24483.

- 38. Topal FE, Bilgin S, Yamanoglu A, et al.. The Feasibility of the Ultrasound-Guided Femoral Nerve Block Procedure with Low-Dose Local Anesthetic in Intracapsular and Extracapsular Hip Fractures. The Journal of Emergency Medicine. 2020;58:553-561. https://doi.org/10.1016/j.jemermed.2019.12.033.
- 39. Chen L, Shen Y, Liu S, et al.. Ultrasound-guided supra-inguinal fascia Iliaca compartment block for older adults admitted to the emergency department with hip fracture: a randomized controlled, double-blind clinical trial. BMC Geriatrics. 2021;21. https://doi.org/10.1186/s12877-021-02646-4.
- 40. Isfahani MN, Javid M. Ultrasound-guided Supracondylar Radial Nerve Block To Manage Distal Radius Fractures in The Emergency Department. Journal of Emergency Medicine, Trauma and Acute Care. 2021;2020. https://doi.org/10.5339/jemtac.2020.14.
- 41. Lee JS, Bhandari T, Simard R, et al.. Point-of-care Ultrasound-guided Regional Anaesthesia In Older Ed Patients With Hip Fractures: A Study To Test The Feasibility Of A Training Programme And Time Needed To Complete Nerve Blocks By Ed Physicians After Training. BMJ Open. 2021;11:e047113. https://doi.org/10.1136/bmjopen-2020-047113.
- 42. Saglam C, Korkmaz A, Gullupinar B, et al.. Simple Manual Pressure with Ultrasound-Guided Femoral Nerve Block: A randomized single blind study. The American Journal of Emergency Medicine. 2021;50:278-282. https://doi.org/10.1016/j.ajem.2021.07.063.

- 43. Tekin E, Aydin ME, Turgut MC, et al.. Can Ultrasound-guided Infraclavicular Block Be An Alternative Option For Forearm Reduction In The Emergency Department? A Prospective Randomized Study. Clinical and Experimental Emergency Medicine. 2021;8:307-313. https://doi.org/10.15441/ceem.20.136.
- 44. Vrablik M, Akhavan A, Murphy D, et al.. Ultrasound-Guided Nerve Blocks for Painful Hand Injuries: A Randomized Control Trial. Cureus. 2021;13. https://doi.org/10.7759/cureus.18978.
- 45. Wroe P, O'Shea R, Johnson B, et al.. Ultrasound-guided forearm nerve blocks for hand blast injuries: case series and multidisciplinary protocol. The American Journal of Emergency Medicine. 2016;34:1895-1897. https://doi.org/10.1016/j.ajem.2016.06.111.
- 46.Xu L, Hu Z, Shen J, et al.. Efficacy Of Us-guided Transversus Abdominis Plane Block And Rectus Sheath Block With Ropivacaine And Dexmedetomidine In Elderly High-risk Patients. Minerva Anestesiologica. 2021;84. https://doi.org/10.23736/s0375-9393.17.11538-5.
- 47. Armin E, Movahedi M, Najafzadeh MJ, et al.. Comparison Of Ultrasound-guided Erector Spinae Plane Block With Intercostal Nerve Block For Trauma-associated Chest Wall Pain. The Journal of Emergency Medicine. 2022;63:520-527. https://doi.org/10.1016/j.jemermed.2022.09.018.
- 48. Gullupinar B, Saglam C, Unluer EE, et al.. Effectiveness Of Pericapsular Nerve Group Block With Ultrasonography In Patients Diagnosed With Hip Fracture In The Emergency Department. Turkish Journal of Trauma and Emergency Surgery. 2022. https://doi.org/10.14744/tjtes.2022.67817.

49. Heffler MA, Brant JA, Singh A, et al.. Ultrasound-guided Regional Anesthesia Of The Femoral Nerve In The Pediatric Emergency Department. Pediatric Emergency Care. 2022;39:e30-e34.

https://doi.org/10.1097/pec.000000000002607.

- 50. Martin D, Guillen M, Farro A, et al.. Role Of Tele-ultrasound For Teaching Ultrasound-guided Nerve Blocks In The Emergency Department: A Case Series From Peru. Clinical Practice and Cases in Emergency Medicine. 2022;6:204-207. https://doi.org/10.5811/cpcem.2022.2.55417.
- 51. Mohanty CR, Varghese JJ, Panda R, et al.. Ultrasound-guided Selective Peripheral Nerve Block Compared With The Sub-dissociative Dose Of Ketamine For Analgesia In Patients With Extremity Injuries. The American Journal of Emergency Medicine. 2022;63:94-101 https://doi.org/10.1016/j.ajem.2022.10.020.
- 52. Tsai T, Cheong KM, Su Y, et al.. Ultrasound-Guided Femoral Nerve Block in Geriatric Patients with Hip Fracture in the Emergency Department. Journal of Clinical Medicine. 2022;11:2778. https://doi.org/10.3390/jcm11102778.
- 53. Ashtari S, Hasanzadeh A, Bahmani A, et al.. Periosteal Nerve Block Vs. Intravenous Morphine in Pain Relief of Distal Radius and Ulna Fracture; a Double-Blind Randomized Clinical Trial. Archives of Academic Emergency Medicine. 2023;11. https://doi.org/10.22037/aaem.v11i1.2056.
- 54. Gerlier C, Mijahed R, Fels A, et al.. Effect of early ultrasound-guided femoral nerve block on preoperative opioid consumption in emergency patients with hip

fracture: a randomized trial. European Journal of Emergency Medicine. 2023. https://doi.org/10.1097/mej.000000000001075.

- 55. Merz-Herrala J, Leu N, Anderson E, et al.. Safety And Pain Reduction In Emergency Practitioner Ultrasound-guided Nerve Blocks: A One-year Retrospective Study. Annals of Emergency Medicine. 2023;83:14-21. https://doi.org/10.1016/j.annemergmed.2023.08.482.
- 56. Mohanty CR, Gupta A, Radhakrishnan RV, et al.. Ultrasound-guided Low-volume Anterior Suprascapular Nerve Block For Reduction Of Anterior Shoulder Dislocation In The Emergency Department. Turkish Journal of Emergency Medicine. 2023;23:254-257. https://doi.org/10.4103/tjem.tjem_319_22.
- 57. Ramesh S, Ayyan SM, Rath DP, et al.. Efficacy And Safety Of Ultrasound guided Erector Spinae Plane Block Compared To Sham Procedure In Adult Patients With Rib Fractures Presenting To The Emergency Department: A Randomized Controlled Trial. Academic Emergency Medicine. 2023;31:316-325. https://doi.org/10.1111/acem.14820.
- 58. David SN, Murali V, Kattumala PD, et al.. Easier Trial (erector-spinae Analgesia For Hepatopancreaticobiliary Pain In The Emergency Room): A Single-centre Open-label Cohort-based Randomised Controlled Trial Analysing The Efficacy Of The Ultrasound-guided Erector-spinae Plane Block Compared With Intravenous Morphine In The Treatment Of Acute Hepatopancreaticobiliary Pain In The Emergency Department. Emergency Medicine Journal. 2024;41:588-594. https://doi.org/10.1136/emermed-2023-213799.

- 59. Ho B, Fyfe-Brown R, Chopra S, et al.. The Erector Spinae Plane Block Vs. Usual Care For Treatment Of Mechanical Back Pain In The Emergency Department: A Pilot Study. Canadian Journal of Emergency Medicine. 2024;26:543-548. https://doi.org/10.1007/s43678-024-00748-7.
- 60. Rukerd MRZ, Erfaniparsa L, Movahedi M, et al.. Ultrasound guided Femoral Nerve Block Versus Fascia Iliaca Compartment Block For Femoral Fractures In Emergency Department: A Randomized Controlled Trial. Acute Medicine & Surgery. 2024;11. https://doi.org/10.1002/ams2.936.
- 61. Saga E, Falk RS, Bing-Jonsson PC, et al.. Nurse-led Ultrasound-guided Femoral Nerve Block: A Randomised Controlled Trial Of Two Different Patient Flow Systems In An Emergency Department. International Journal of Orthopaedic and Trauma Nursing. 2024;52:101074. https://doi.org/10.1016/j.ijotn.2023.101074.
- 62. Sahoo S, Sahoo NK, Hansda U, et al.. Ultrasound-guided Pericapsular Nerve Block Compared With IV Opioids In Hip Injuries: A Randomised Controlled Trial. The American Journal of Emergency Medicine. 2024;81:99-104. https://doi.org/10.1016/j.ajem.2024.04.016.
- 63. Higgins JPT. Measuring Inconsistency In Meta-analyses. BMJ. 2003;327:557-560. https://doi.org/10.1136/bmj.327.7414.557.
- 64. Bretholz A, Doan Q, Cheng A, et al.. A presurvey and postsurvey of a web-and simulation-based course of ultrasound-guided nerve blocks for pediatric emergency medicine. Pediatric emergency care. 2012;28:506-509.

https://doi.org/10.1097/PEC.0b013e3182586f42.

- 65. Pek JH, Chia WJD, Kaliannan S, et al.. Teaching ultrasound guided femoral nerve block in the emergency department. Medical Ultrasonography. 2020;22:97-101. <u>http://doi.org/10.11152/mu-2112</u>.
- 66. Exsteen OW, Svendsen CN, Rothe C, et al.. Ultrasound-guided Peripheral Nerve Blocks For Preoperative Pain Management In Hip Fractures: A Systematic Review. BMC Anesthesiology. 2022;22. <u>https://doi.org/10.1186/s12871-022-01720-7</u>.
- 67. Gawel RJ, Grill R, Bradley N, et al.. Ultrasound-guided Peripheral Nerve Blocks For Shoulder Dislocation In The Emergency Department: A Systemic Review. The Journal of Emergency Medicine. 2023;65:e403-e413. https://doi.org/10.1016/j.jemermed.2023.05.021.

Johngra