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Abstract: Ultrasound (US) is rapidly gaining attraction among physicians for the evaluation
of fasciae. Unlike traditional imaging, which often lacks specificity of pain localization,
US examination stands out as a versatile tool, capable of detecting both structural and
functional information. This unique capability allows for a comprehensive assessment of
fasciae—the intricate connective tissue essential for human biomechanics. US examination
offers a multiparametric approach for the assessment of thickness, echogenicity, stiffness,
deformation and shear strain. This comprehensive examination is invaluable for identifying
fascial pathologies that may not be detected during physical examination. In this study, we
render and discuss common/elementary lesions of the fascia.
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1. Introduction
Using ultrasound (US) examination, provisional definitions have become a crucial

part of outcome measurements in musculoskeletal medicine [1,2]. Owing to its several ad-
vantages, US allows for comprehensive/dynamic assessment in multiple planes, providing
detailed visualization of soft tissues with remarkable anatomical accuracy [3]. Likewise, US
has also become a preferred modality for evaluating fascial abnormalities. However, since
US is operator-dependent, with the scarcity of robust data concerning its use in fasciae, the
interpretation/comparison of relevant studies is quite difficult. Specifically, standardized
scanning methods and universally accepted definitions for US-detected fascial pathologies
are lacking. While musculoskeletal US is widely employed for the assessment of muscles
and tendons, the role of fasciae has traditionally received less attention. This pictorial
narrative review aims to address this gap and establish greater consistency and reliability,
with refined definitions for fascial pathologies.

2. Materials and Methods
This study is a pictorial narrative review aimed at illustrating the ultrasonographic

appearance of fascial involvement in common disorders. The methodological approach
was designed to provide a comprehensive and educational overview of the most frequent
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fascial pathologies encountered in clinical practice. The primary objective was to synthe-
size relevant imaging findings, supported by a selection of representative, high-quality
sonographic papers and images.

2.1. Literature Search Strategy

A targeted literature search was conducted to support the clinical relevance and accu-
racy of the pictorial content. The search was performed across five electronic databases:
PubMed, Cochrane Library, Web of Science, Google Scholar and Scopus. A combina-
tion of Medical Subject Heading (MeSH) terms and free-text keywords was employed to
identify studies related to ultrasonographic evaluation of fasciae in pathological condi-
tions. The keywords and search terms included but were not limited to “Fasciae”, “fascial
pathology”, “ultrasound”, “sonography”, “ultrasonography”, “ultrasound examination”,
“musculoskeletal ultrasound”, “fascial involvement”, “soft tissue disorders”, “myofascial
diseases”, “entrapment syndromes”, “inflammatory fascial disorders” and “fascial fibrosis”.
Boolean operators (AND, OR) were used to refine the search.

2.2. Inclusion Criteria

The literature search was limited to peer-reviewed articles published in English from
inception until February 2025. For the purpose of this pictorial and narrative review,
specific inclusion and exclusion criteria were established to ensure that the selected mate-
rials were clinically relevant, representative and aligned with the educational objectives
of the manuscript. Studies and clinical cases were considered eligible for inclusion if
they described the ultrasonographic evaluation of fascial involvement in the context of
common musculoskeletal disorders. In particular, the review included articles and re-
ports focusing on sonographic patterns of fascial abnormalities, such as fascial thickening,
fibrosis, edema fluid accumulation, entrapment phenomena or inflammatory changes.
Eligible publications encompassed peer-reviewed reviews, observational studies, prospec-
tive or retrospective case series and pictorial essays, provided they contained original
sonographic data.

2.3. Exclusion Criteria

Studies were excluded if they did not focus on the sonographic assessment of fasciae or
if they lacked a clear description of fascial involvement. Abstracts, conference proceedings
and non-peer-reviewed materials were excluded.

2.4. Study Selection

The selection of studies was conducted following a structured, multi-phase approach.
After the initial literature search, all retrieved records were imported into Zotero reference
management software, where duplicate papers were identified and removed. A preliminary
screening of titles and abstracts was then performed independently by two reviewers (C.P.
and N.P.) to assess their relevance to the scope of this review, specifically focusing on the
ultrasonographic assessment of fascial involvement in common musculoskeletal disorders.
Following the preliminary screening, the full texts of the selected studies were reviewed in
detail to ensure compliance with the inclusion criteria and the objectives of this pictorial
narrative review. Any discrepancies between reviewers were resolved by consensus, or by
consulting a third (L. Ö.) and a fourth (C. S.) reviewer.
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3. Results
3.1. Normal Ultrasonographic Appearance of Fasciae

Fasciae are continuous, fibrous connective tissue structures that envelop, support
and separate structures (such as muscles, etc.) throughout the body. According to their
anatomical location, fasciae are typically classified as superficial fasciae, which are located
in the subcutaneous tissue, and deep fasciae, which surround muscles and neurovascular
bundles. Functionally, fasciae play a critical role in force transmission, proprioception,
compartmentalization and tissue sliding/movement. On conventional US examination,
a normal fascia appears as a thin, regular, hyperechoic linear structure, located in the
subcutaneous tissue (superficial fascia) and separating/enveloping muscles (deep fascia)
(Figure 1).
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Figure 1. Normal US appearance of thoracolumbar fascia (TLF) of healthy subject.

Its appearance may vary slightly according to the anatomical region, depth and probe
orientation. Dynamic US imaging of healthy fasciae reveals a smooth, gliding motion
during active or passive movement of the underlying structures, without interruptions, ad-
hesions or pathological thickening. There are accepted reference ranges of fascial thickness,
reporting mean values ranging from 0.6 mm to 1 mm for superficial fascia and from 0.7 mm
to 1.5 mm for deep fascia in the upper and lower limbs, depending on the anatomical site
and patient-related variables such as age, sex and body mass index [4]. Color and Power
Doppler signals may occasionally be detected in healthy fasciae when small perforating
vessels cross fascial planes. The presence of persistent or diffuse Doppler signals within the
fascial layers should be considered abnormal and suggestive of inflammatory involvement.
Regarding sono-elastography, both strain and shear-wave have been explored as adjunctive
tools to evaluate the mechanical properties of fasciae. In healthy conditions, fasciae exhibit
high elasticity and low stiffness. However, current evidence is limited, and normative
values for different anatomical regions have not yet been standardized.

3.2. General Pathologic Findings of Fasciae
3.2.1. Fibrosis

Fascial fibrosis, characterized by the thickening and stiffening of fascial tissues,
presents a significant challenge in clinical practice due to its complex pathology/etiology [5].
It is a pathological condition involving excessive deposition of collagen and other extra-
cellular matrix components within the fasciae, leading to a loss of tissue elasticity and
function [5]. It is associated with a variety of conditions, including chronic musculoskeletal
pain syndromes, post-surgical adhesions and systemic diseases such as scleroderma [6].
Early and accurate diagnosis of fascial fibrosis is critical for effective management and
improving patient outcomes.
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On US, fascial fibrosis typically presents as a hyperechoic and thickened band of fascial
tissue as opposed to normal fascia, which is usually characterized by the alternation of thin
hypoechoic and hyperechoic lines. The increased echogenicity is due to the dense collagen
fibers and reduced water content within the fibrotic tissue [5]. Dynamic US imaging can
reveal restricted movement of the fascia relative to the underlying structures, a hallmark
of fibrotic changes [6]. This restricted gliding is due to the stiffening/thickening of the
fascial tissue, which can adhere to adjacent anatomical structures (e.g., muscle, tendon) as
well. Doppler US can also be employed to assess the vascularity of fibrotic fascia. Typically,
fibrotic tissue demonstrates reduced or absent vascularization due to the avascular nature
of dense collagen deposits. However, in cases where fibrosis is accompanied by active
inflammation, increased vascularity may be observed. In advanced cases, the fibrotic fascia
my exhibit irregular or nodular contours, reflecting the heterogeneous nature of the fibrosis
process [7,8] (Figure 2).
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Shear-wave elastography (SWE) or strain elastography (SE) measures tissue stiffness
and has been increasingly used in conjunction with conventional US to assess fibrosis.
As confirmed by different studies, fibrotic fascia exhibits significantly higher stiffness
values compared to normal tissue [9]. This additional information can aid in differen-
tiating between various stages of fibrosis and in monitoring the disease progression or
response to therapy. In fascial fibrosis, sono-palpation can help to reveal areas of abnor-
mal stiffness and reduced elasticity, which may not be always apparent on static imaging
alone [10,11].

3.2.2. Densification

The term densification refers to an alteration in the sliding capacity of the fascial
planes, while the general architecture of the fascia is preserved [5]. Fascial densification
is a reversible condition—often linked to chronic overuse, trauma or local inflammation—
for which accurate diagnosis is essential for effective treatment [12]. This alteration can
only be assessed with dynamic examination [13]. Actually, the only finding on static US
evaluation is thickening of the loose connective tissue around the fascia or between the
fascial layers, suggesting an accumulation of fluid components [14]. It typically appears
as area of decreased echogenicity, reflecting the accumulation of glycosaminoglycans (in
particular hyaluronic acid) and an increase in water content [15–17]. US imaging also
allows for a detailed evaluation of the fascial echotexture, offering insights into its density
and elasticity (Figure 3).
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Sono-palpation and dynamic assessment can detect subtle changes in tissue density
and viscoelastic properties [16,17]. This is particularly important in cases where the densifi-
cation does not yet present as a clear morphological change but has already affected tissue
function. Dynamic assessment can highlight areas where the fascia demonstrates abnormal
resistance or altered viscoelastic properties [12,13]. This can manifest as a reduction in the
smooth sliding of fascial layers over one another, an essential function for normal biome-
chanical activity. Doppler US does not detect neovascularization but can help distinguish it
from other inflammatory conditions.

3.2.3. Scar

Scars represent a dynamic biological process, reflecting the complex interplay of
cellular mechanisms and extracellular matrix remodeling that are aimed at restoring tissue
integrity yet often leave behind structural and functional compromises that can impact
long-term outcomes. Assessment of the adhesions between fascial planes and the overlying
skin is important for distinguishing different scar types [18,19]. US examination also
clearly shows the different fascial layers, i.e., superficial fascia, deep fascia, superficial
adipose tissue (SAT) and deep adipose tissue (DAT). This level of detailed insight helps
to tailor interventions more effectively and to optimize the therapeutic outcome. For
example, previous studies examining post-cesarean scarring demonstrated that while
both the skin and subcutaneous layers remained unaffected, substantial thickening was
observed in the deep fascia [18]. Such findings underscore the unique capability of US to
provide a comprehensive evaluation of scarring, including the regeneration of fascial planes,
appropriate layer thickness, proper fascial mobility and adequate vascularization [19].
Particularly hypertrophic and keloid scars, along with thickened or fibrotic fasciae, can
significantly impact the quality of life by causing pain, stiffness and functional limitations.
They appear as hyperechoic areas on US imaging, with varying degrees of thickness
depending on the type and maturity of the scar [20] (Figure 4).

Hypertrophic scars and keloids usually present as thickened, hyperechoic bands
with poorly defined margins, often accompanied by irregular internal echotexture, due
to collagen deposition and fibrosis [21]. They often exhibit increased blood flow, which is
a marker of active scar formation and can guide the treatment decision. The relationship
between scarring and fasciae is complex, as scars can lead to fascial adhesions, fibrosis and
thickening [18–21]. On US imaging, the fascial changes appear as hyperechoic bands within
the fascial layers, often with a loss of the normal layered structure of the fascia. Fascial
thickening and adhesions can restrict movement. Elastography can quantify the stiffness of
the affected tissue, providing valuable information about the severity.
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3.3. Inflammatory Conditions
Fasciitis

Fasciitis encompasses a spectrum of inflammatory conditions, such as plantar fasciitis,
necrotizing fasciitis and eosinophilic fasciitis. These conditions can arise from overuse,
trauma, infection or systemic inflammatory diseases, leading to significant pain and func-
tional impairment. On US, the affected fascia typically appears as thickened and hypoechoic
compared to surrounding normal tissues [22–24]. For example, in plantar fasciitis, the
plantar fascia often exceeds 4 mm in thickness, with associated hypoechogenicity reflecting
edema/inflammation. Chronic cases may exhibit calcifications or bony spurs at the fascial
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attachments site, further highlighting the utility of US imaging in characterizing disease
progression (Figure 5).
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fibrotic changes. 

3.4. Tumours: Benign and Malignant 

Figure 5. Plantar fasciitis. *: regions of increased plantar fascia thickness. (A) US examination
demonstrating focal thickening and hypoechogenicity of the fascia. (B) Magnetic resonance imaging
(MRI) using a dual proton–density turbo spin echo (DP_TSE) sequence, highlighting focal thickening.
(C) MRI with a short tai inversion recovery (STIR) sequence, showing perilesional edema and signal
intensity alterations consistent with inflammation.

Dynamic US imaging can show the loss of normal fascial elasticity, with the affected
tissue appearing stiff and less responsive to compression [25]. This type of examination is
critical in distinguishing fasciitis from other sources of heel pain, such as fat pad atrophy or
tendinopathy [26]. Doppler US may often reveal increased vascularity [27]. This feature
helps differentiate fasciitis from other similar conditions like plantar fibromatosis or early
fibrotic changes.

3.4. Tumours: Benign and Malignant
3.4.1. Nodular Fasciitis

Nodular fasciitis is a reactive proliferative lesion of the fascia, presenting as a rapidly
growing, painless mass [28]. Although benign, it may clinically/radiologically resem-
ble malignant soft tissue tumors (e.g., sarcomas) and might therefore lead to diagnostic
challenges. The etiology of nodular fasciitis is not fully understood, but it is often consid-
ered to be a response to minor trauma or inflammation. On US imaging, it appears as a
well-defined, hypoechoic to isoechoic mass relative to the surrounding muscle tissue [28]
(Figure 6).
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The lesion is often superficial and may demonstrate a heterogenous echotexture with
internal septations. In some cases, the mass may appear slightly lobulated, reflecting its
benign and reactive nature. Unlike malignant tumors, nodular fasciitis usually lacks signifi-
cant necrosis or hemorrhage, features that can be evaluated effectively with high-resolution
ultrasound [29]. Doppler US might exhibit mild-to-moderate internal vascularity, which
helps to differentiate it from highly vascular malignant tumors [29]. Overall, this vascu-
lar pattern, along with its well-circumscribed nature, would support a benign diagnosis
and avoid unnecessary biopsy or surgical excision [30]. Similarly, elastography gener-
ally yields intermediate stiffness in contrast to firmer consistency of malignant soft tissue
tumors [30].

3.4.2. Elastofibroma Dorsi

Elastofibroma dorsi is a slow-growing benign soft tissue tumor, commonly located in
the infrascapular region between the thoracic wall and the lower pole of the scapula [31,32].
Although it is typically asymptomatic, some patients may experience pain, discomfort or a
snapping sensation with shoulder movements. On US imaging, elastofibroma dorsi appears
as a well-defined, ovoid or lobulated intra-fascial mass with a heterogenous echotexture
(Figure 5). The lesion often shows alternating linear hypoechoic strands, which correspond
to the fibrous/fatty components of the tumor [31]. This “checkerboard” pattern is highly
characteristic of elastofibroma dorsi and helps to differentiate it from other fascial and soft
tissue tumors (e.g., lipoma or sarcoma) [32] (Figure 7).

One distinctive feature of elastofibroma dorsi is its tendency to occur bilaterally,
and thus easy comparative imaging might again be the important advantage with US
examination [32]. Doppler US might reveal minimal vascularity, reflecting its benign nature
as well as differentiating it from more aggressive or malignant soft tissue tumors [32].
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3.4.3. Fibromatosis

Fibromatosis refers to a spectrum of fibroblastic proliferations that, while benign, tend
to exhibit locally aggressive behavior with a propensity for recurrence after treatment [33].
These lesions can arise in various locations, including the abdominal wall, extremities
and head/neck region, and can be associated with significant morbidity depending on
their size and location [33,34]. Given the challenges in distinguishing fibromatosis from
malignant soft tissue tumors, accurate imaging is critical for guiding management. On US
imaging, fibromatosis appears as a hypoechoic mass with a homogenous echotexture. The
lesion is usually well defined but can infiltrate the surrounding tissues, where it might
have an irregular or poorly circumscribed appearance [33]. The homogeneity of the lesion,
combined with its hypoechoic nature, helps to differentiate it from other soft tissue tumors,
such as lipoma (which is usually more echogenic) or sarcoma (which may show a heteroge-
nous echotexture due to necrosis or hemorrhage). On Doppler US, these lesions exhibit
minimal-to-moderate internal vascularity, distinguishing them from more vascularized
malignant tumors [35]. However, increased vascularity might be observed in larger or more
aggressive fibromatoses (particularly those with rapid growth), reflecting active fibroblastic
proliferation. One of the hallmark US features of fibromatosis is its tendency to infiltrate sur-
rounding muscles, tendons, subcutaneous tissue, superficial and deep fasciae [35,36]. This
characteristic finding is crucial for planning surgical interventions, as complete resection
with negative margins is often necessary to reduce the risk of recurrence.

3.4.4. Desmoid Tumor

Desmoid tumor refers to the fibroblastic proliferation within fasciae that, while his-
tologically benign, can behave aggressively with a high risk of local invasion and recur-
rence [37]. It can arise in any anatomical location, but most commonly in the abdominal wall,
extremities and head/neck. Given its potential to cause significant morbidity, especially
when involving vital structures, accurate imaging is essential for prompt management [37].
On US imaging, it appears as a well-defined, hypoechoic mass with a homogenous or
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slightly heterogenous echotexture [38]. Its borders may appear well circumscribed or ill
defined, depending on the degree of infiltration into the surrounding tissues. The internal
structure of the tumor is usually homogenous, but in some cases, it may show areas of
hyperechogenicity due to fibrosis or calcification [39]. On Doppler US, it often exhibits
moderate-to-high internal vascularity, different from other benign soft tissue masses like
lipomas. The vascular pattern can also aid in monitoring response to therapy, as reduced
vascularity may correlate with a favorable treatment response [39].

3.4.5. Lipoma

Lipomas are the most common type of benign soft tissue tumor, typically presenting
as a slow-growing, soft and painless mass in the subcutaneous tissue. While most lipomas
are superficial and encapsulated between the layers of superficial fascia, some may develop
deeper in the deep fascia or between the fascial planes of muscles, interacting with or
displacing the fasciae [40]. Understanding the relationship between lipomas and fasciae is
critical for planning management strategies, especially in case where the lipoma causes pain
or functional impairment due to the compression of fascial or neurovascular structures [17,40].

On US, lipomas appear as well-defined, homogeneously hyperechoic or isoechoic
masses [41]. Their borders are usually smooth, and their shape is often oval or round.
Because of their soft adipose tissue composition, they exhibit low internal resistance to
sound waves, appearing as hypoechoic [41]. Superficial lipomas are most commonly
located above the deep fascia, rarely infiltrating or involving its layers. In deeper lipomas,
US examination can delineate their boundaries and assess any displacement of surrounding
structures, including the superficial and deep fasciae [42] (Figure 8).
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US is again contributory to the differential diagnosis. For instance, fibrolipomas
may show internal septations whereas angiolipomas may display hypoechoic regions
due to the presence of vascular channels. The absence of heterogeneous components,
necrosis or infiltrative borders is key to confirming the benign nature of the lesion [43].
Dynamic US is not used in lipomas’ routine evaluation, as they are generally static and
non-invasive. However, in visualizing their movement relative to the fasciae during muscle
or joint movements, the absence of infiltration/compression onto deeper structures may
be confirmed. Mapping the precise location would be paramount for surgical plans in
case needed. Sono-palpation can be used to assess the consistency and compressibility of
lipomas [15,17]. This approach often confirms the soft, compressible nature of the lipoma
and the absence of resistance during manual compression, which is indicative of benignity.

Elastography is also a useful adjunct to B-mode imaging, whereby lipomas are gen-
erally soft and compressible, in contrast to firm masses like fibromatosis or malignant
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tumors [44]. On Doppler US, lipomas are typically avascular; however, larger ones may
exhibit peripheral vascularity due to their size and proximity to blood vessels. The absence
of substantial vascularity further supports their benign nature and differentiates them from
more vascularized (malignant) tumors [40–44].

3.5. Musculoskeletal Disorders
3.5.1. Myofascial Muscle Injury

The myofascial unit, consisting of skeletal muscle and its surrounding deep fascia, is
essential for efficient movement and optimal biomechanical function. Injuries to this unit,
often termed as myofascial injuries, can significantly disrupt normal function [45,46]. The
involvement of fasciae plays a critical role in both the onset and persistence of relevant
symptoms. Yet, far from being a passive structure, fasciae actively contribute to muscle
coordination, force transmission and proprioception [45,46]. US is often the first line of
investigation in myofascial lesions, whereby tears are visualized as discontinuities within
the fascia and muscle fibers, and depending on the severity, there may be fluid collection or
hematoma surrounding the affected area [47,48] (Figure 9).
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In cases of severe injury, the fascia may also be disrupted/torn, leading to thickening,
irregularity or detachment from the underlying muscle. Dynamic US and sono-palpation
can help pinpoint areas of injury and also mobilize fluid collection, if present. Elastography
can differentiate between areas of normal muscle (less stiff) and fibrosis/scar tissue (more
stiff and less elastic) [49]. On Doppler US, acute (not chronic) muscle injuries may reveal
increased vascularity, i.e., inflammation [49].

3.5.2. Morel–Lavallée Lesion (MLL)

This is a rare, post-traumatic, closed soft tissue injury caused by shearing forces that
separate skin and subcutaneous tissue from the underlying deep fascia—creating a potential
space filled with a mixture of blood, lymph, fat and necrotic debris [50]. MLL is most
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commonly found over the bony prominences (e.g., greater trochanter) due to shearing injury
that disrupts the relationship between the subcutaneous tissue and the superficial/deep
fascia and retinacula cutis. Clinically, these lesions may present as a fluctuant or firm mass,
with skin discoloration, swelling and variable tenderness, often emerging days to weeks
after the trauma [51]. If not diagnosed and treated in a timely manner, MLL can progress
to chronic encapsulated collections, leading to fibrosis, secondary infections or persistent
inflammation, complicating the treatment and recovery alike.

On US examination, fascial detachment and hypoechoic or anechoic fluid collection
are often present, and the lesion contains internal debris such as blood or necrotic fat [52].
Chronic MLL may exhibit hyperechoic fibrous encapsulation within the space between
the superficial and deep fasciae. Dynamic US examination further enhances diagnostic
accuracy by evaluating fascial mobility and fluid shifting within the lesion [52,53]. Re-
stricted movement in the fascial plane or the identification of adhesions can indicate a
chronic/complicated lesion. Doppler US is utilized to detect peripheral hyperemia, which
is indicative of inflammation or potential infection. It also helps to confirm the absence of
vascularity within the lesion itself, differentiating MLL mainly from vascular malforma-
tions [52]. In acute lesions, elastography typically reveals lower stiffness due to the liquid
nature of the collection, whereas in chronic lesions, increased stiffness is often present
due to fibrotic changes and encapsulation [52]. Sono-palpation is an important dynamic
modality used to assess compressibility and displacement of the lesion which provides
valuable diagnostic clues. Of note, assessing the pain response during this maneuver can
be helpful in evaluating the inflammatory state [16].

3.5.3. Myofascial Trigger Points

A myofascial trigger point (MTrP) is a hyperirritable nodule located within a taut band
of skeletal muscle. It is often referred to as a “muscle knot” and can cause localized and
referred pain [53]. An MTrP may be active, causing spontaneous pain, or latent, becoming
painful only when palpated. They are associated with muscle dysfunction, a reduced range
of motion and underlying fascial abnormalities [53]. US examination has emerged as a valu-
able tool for the assessment of MTrPs, providing objective and reproducible insights into
their structure and interaction with surrounding fasciae [53]. MTrPs, which are commonly
associated with myofascial pain syndrome, appear as hypoechoic or hyperechoic regions
of gray-scale US, often characterized by disrupted fascial continuity and altered muscle
texture [53,54]. Fascial abnormalities, such as thickening, fibrosis and restricted gliding
between fascial layers, are critical contributors to the persistence of MtrPs and can also be
effectively visualized through US examination [52]. Doppler imaging further highlights
vascular changes in the vicinity of active MTrPs, revealing increased vascular resistance
and distinct blood flow patterns compared to normal muscle [55]. During elastography,
MTrPs are stiffer than the surrounding tissue, with reduced vibration amplitudes reflecting
heightened tension and decreased elasticity [53].

3.5.4. Fascial Nerve Entrapments

Fascial nerve entrapments are neuropathic conditions in which peripheral nerves are
functionally impaired due to altered mechanical relationships with surrounding fasciae,
rather than classical compressive lesions [56]. The paraneural sheath, a specialized exten-
sion of the deep fascia, envelops the nerve and plays a key role in neurovascular protection,
proprioception and the transmission of myofascial forces [57]. US examination, in particular
in its high-resolution static and dynamic applications, has emerged as a powerful tool for
evaluating these disorders. US enables (1) the precise visualization of the nerve’s morphol-
ogy, echogenicity and cross-sectional area; (2) the identification of fascial thickening, loss of
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normal fascial planes or altered fascial tissue echotexture; and (3) the detection of perineural
fluid, fibrosis or structural changes suggesting chronic entrapment. However, dynamic
US adds crucial diagnostic value by assessing (1) the mobility of the nerve within and
against fascial structure during passive and active movements; (2) the presence of abnormal
gliding patterns, fascial adhesions or delayed nerve recoil; and (3) comparative analysis
with the contralateral side to detect subtle asymmetries in movement and positioning.
Dynamic scanning is particularly useful in cases with non-specific symptoms or negative
electrophysiological tests, where fascial restrictions alter nerve function without clear struc-
tural compression [58]. Moreover, US examination allows real-time sono-palpation and
sono-Tinel to reproduce symptoms and guide targeted interventions [16] (Figure 10).
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3.5.5. Compartment Syndrome

Compartment syndrome represents a pathophysiological cascade in which the fascial
envelope plays a pivotal role [59–61]. The deep fascia defines the anatomical boundaries of
each compartment and determines the capacity to accommodate volume changes. When
intracompartimental pressure rises—whether due to trauma, hemorrhage or ischemia–
reperfusion injury—the rigid fascial constraints impede venous outflow and capillary
reperfusion, precipitating cellular hypoxia and tissue necrosis. In this context, the deep
fascia is not merely a passive boundary but an active player in both its onset and progression.
US examination, in particular with high-frequency linear probes, offers an unparalleled
tool for the direct visualization of fasciae in real time. The deep fascia can be dynamically
assessed for thickening, irregularity, loss of continuity or abnormal hypoechogenicity, which
may reflect inflammatory changes or structural compromise. Moreover, interfascial fluid
collections, hematomas or subfascial edema can be detected early, enhancing diagnostic
accuracy [61]. In the postoperative phase, the fascial status remains clinically relevant.
US examination enables the monitoring of fascial healing, detection of post-fasciotomy
fibrosis or adhesions and assessment of persistent fascial constriction in cases of incomplete
decompression [62]. In addition, Doppler US, in particular superb microvascular imaging
(SMI), allows for the evaluation of vascular dynamics across fascial planes, providing
insights into reperfusion and potential ischemic sequelae (Figure 11).
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3.5.6. Plantar Fascial Rupture

Plantar fascia rupture presents distinct ultrasonographic features that are invaluable
for accurate diagnosis and management. The hallmark finding is focal discontinuity in
the normally hyperechoic and fibrillar architecture of the fascia, often with surrounding
hypoechoic areas reflecting edema or hematoma [63] (Figure 12).
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Dynamic US examination is particularly useful to assess the extent of injury, as it
allows the visualization of fascial mobility and potential retraction during plantar flexion
or dorsiflexion [64]. Power or color Doppler imaging may reveal increased vascularity
in the surrounding tissues, indicating acute inflammation or a healing response [63,64].
Elastography can provide quantitative insights into tissue stiffness, demonstrating reduced
stiffness compared to adjacent intact fascial regions [63,64].

3.6. Subcutaneous Tissue and Lymphatic Disorders
Lymphedema and Lipedema

These are two distinct conditions frequently confused due to their overlapping clinical
presentations of limb enlargement. However, these conditions differ in their etiology, tissue
characteristics and response to treatment, and thus precise diagnosis is paramount. In this
sense, US examination is definitely contributory [65–67]. Lymphedema is a chronic condi-
tion characterized by the accumulation of lymphatic fluid due to obstruction or dysfunction
of the lymphatic system, eventually leading to swelling primarily in the extremities [66].
Management is based on facilitating lymphatic drainage and preventing further compli-
cations. US examination often reveals increased subcutaneous tissue thickness, with a
distinctive honeycomb pattern, reflecting fluid accumulation between the retinacula cutis
(Figure 13).
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Figure 13. Ultrasonographic features of lymphedema in the anterior arm. US image demonstrates
increased subcutaneous tissue thickness with characteristic honeycomb pattern, indicative of fluid
accumulation between the retinacula cutis. +: fluid accumulation. S.F.: superficial fascia. D.F.: deep
fascia. S.A.T.: superficial adipose tissue. D.A.T.: deep adipose tissue.

US examination also helps in evaluating the extension of lymphedema. Sono-palpation
and dynamic examination are employed to assess compressibility, whereby lymphedema-
tous tissue would be partially compressible, often with a slow return to its baseline shape
due to high fluid content [16]. Doppler US is useful to exclude venous insufficiency in
the differential diagnosis. Elastography shows increased stiffness in later stages (due to
fibrosis) and less resistance to compression in acute stages.

Lipedema, on the other hand, is a chronic adipose tissue disorder marked by abnormal
fat deposition, sparing the feet and involving the thighs/buttocks. It predominantly affects
women and is often triggered by hormonal changes such as puberty or pregnancy [68].
Lipedema is characterized by disproportionate accumulation of fat, leading to pain and
easy bruising [68]. US examination shows increased subcutaneous fat thickness, with
hypoechoic nodules representing lipomatous hypertrophy. The fasciae remain well defined,
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with increased thickness of the superficial fascia, superficial and deep adipose tissues [68]
(Figure 14).
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Figure 14. US image shows lipedema with increased subcutaneous tissue thickness and hypoechoic
nodules, indicating lipomatous hypertrophy and thickened superficial fascia. S.F.: superficial fascia.
D.F.: deep fascia. Dashed-line circle: thickened superficial fascia.

Dynamic US examination can show retained fat lobules and retinacula cutis, highlight-
ing stable adipose hypertrophy [68]. Doppler US shows unremarkable findings, as there
is no inflammatory hyperemia or venous insufficiency. Elastography demonstrates soft
fat consistency. Sono-palpation reveals its non-pitting nature as well as noncompressible
superficial/deep adipose tissue.

4. Discussion
The adoption of US imaging in the examination of fasciae is increasing among physi-

cians, with its applications expanding across various medical fields, like physical and
rehabilitation medicine, rheumatology, orthopedics, anesthesiology, pain medicine and
sports medicine [1]. US imaging is a unique outcome measurement instrument because it
is capable of identifying both structural damage and the inflammatory state [1–3]. Notably,
the anatomy of fasciae is intricate and fundamental to understanding the biomechanics of
the human body. Fasciae are dense connective tissue structures that encase and penetrate
muscles, bones, nerve and blood vessels, creating a continuous, integrated network that
supports and coordinates bodily functions. Superficial and deep fasciae can be distin-
guished both anatomically and “ultrasonographically”. The former appears as a thin,
less-defined echogenic line in the subcutaneous tissue, whereas the latter is visualized as
thicker, multilayered, echogenic structures with clear separation between the layers [67].

Unlike traditional imaging techniques, which often fail to correlate with the specific
localization of pain, US imaging provides a multiparametric approach including dynamic
assessment. It enables the visualization of fascial thickness, echogenicity, stiffness, archi-
tectural organization, deformation, shear strain and displacement, eventually providing
comprehensive insights as regards the clinical scenario. This capability is invaluable in
identifying fascial pathology and dysfunction that may not be apparent during physical
examination [1,69,70].

In recent years, this technological advancement has coincided with a paradigm shift
in the understanding of the functional role of fasciae. Increasing evidence suggests that
fasciae are not merely passive structures but play an active role in proprioception, force
transmission and nociceptive signaling. Therefore, pathological alterations in fasciae
(such as fibrosis, increased stiffness, etc.) have been implicated in a variety of clinical
conditions, ranging from chronic musculoskeletal pain to post-surgical complications. The
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ability of US examination to capture such fascial alterations is of paramount importance
in clinical settings. Beyond qualitative observation, recent studies have supported the use
of quantitative ultrasonographic parameters to objectively assess fascial morphology and
biomechanics. Moreover, emerging protocols have focused on defining normative values
for fascial thickness and stiffness across different anatomical regions, age groups and sexes,
enhancing the clinical applicability of US fascial examination.

Another innovative application of US imaging is the assessment of fascial gliding.
Normal fascial mobility ensures the harmonious movement of other anatomical structures,
such the muscles. Impaired fascial gliding due to adhesions, scar tissue or inflammation
can result in mechanical dysfunction and pain. High-resolution ultrasonography, especially
when combined with speckle-tracking techniques or Doppler-based motion analysis, en-
ables the in vivo measurement of fascial displacement and shear strain during dynamic
movement. Recent investigations have highlighted the potential of these dynamic assess-
ments in detecting subclinical fascial dysfunction that may not be evident during physical
examination or static imaging [58,71,72].

Furthermore, the clinical impact of fascial US imaging extends to the interventional
domain. US-guided procedures targeting fasciae, such as hydro-dissection, percutaneous
fascial release, fascial biopsy, fascial blocks and fascial plane injections, are gaining increas-
ing attention [73–75]. Beyond diagnostic and interventional applications, US imaging is
proving to be an invaluable tool that is not limited to pathological conditions. Several
research groups have explored its application in sport science, investigating the impact
of training on fascial properties [76,77]. These studies suggested that US imaging may
serve as a non-invasive tool for optimizing athletic performance and preventing injuries by
monitoring fascial adaptation ton mechanical load [9,78].

Lastly, the widespread accessibility, cost-effectiveness and safety profile of US imaging
make it an ideal modality for large-scale screening and longitudinal studies on fascial
health. Unlike MRI or CT, ultrasonography does not involve ionizing radiation and can be
repeated multiple times without risk, allowing for the dynamic assessment and monitoring
of fascial properties in both clinical and research contexts.

5. Conclusions
In conclusion, US is a “game changer” concerning fascia examination. After initial

static/dynamic B-mode scanning, Doppler imaging and elastography can also be applied
for further assessment. Based on the clinical and US findings, prompt management of
patients with fascia pathologies is then possible.
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